
 

A.S. Sidhu & S.K. Dhillon (Eds.): Adv. in Biomedical Infrastructure 2013, SCI 477, pp. 127–137. 
DOI: 10.1007/978-3-642-37137-0_13                  © Springer-Verlag Berlin Heidelberg 2013 

A Hybrid of Artificial Bee Colony and Flux Balance 
Analysis for Identifying Optimum Knockout Strategies 
for Producing High Yields of Lactate in Echerichia Coli 

Seet Sun Lee1, Yee Wen Choon1, Lian En Chai1, Chuii Khim Chong1, Safaai Deris1, 
Rosli M. Illias2, and Mohd Saberi Mohamad1,* 

1 Artificial Intelligence and Bioinformatics Research Group, Faculty of Computer Science and 
Information Systems, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia 

{sslee6,ywchoon2,lechai2,ckchong2}@live.utm.my, 
{safaai,saberi}@utm.my 

2 Department of Bioprocess Engineering, Faculty of Chemical Engineering,  
Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia  

r-rosli@utm.my 

Abstract. The advent of genome-scale models of metabolism has laid the 
foundation for the development of computational procedures for suggesting 
genetic manipulations that lead to overproduction. Previously, for increasing the 
production of Lactate in E. coli, a traditional method of chemical synthesis was 
being used, this always lead the products are far below their theoretical 
maximums. This is not surprise as the cellular metabolism is always competing 
with the chemical overproduction. Besides, several optimization algorithms 
often get stuck at a local minimum in a multi-modal error. In this research, a 
hybrid of Artificial Bee Colony (ABC) and Flux Balance Analysis (FBA) is 
proposed for suggesting gene deletion strategies leading to the overproduction 
of Lactate in E. coli. In this work, the ABC is introduced as an optimization 
algorithm based on the intelligent behavior of honey bee swarm. As for the 
evaluation of fitness part, each mutant strain is evaluated by resorting to the 
simulation of its phenotype using the FBA, together with the premise that 
microorganisms have maximized their growth along natural evolution. This is 
the first research that successfully combined ABC and FBA for identifying 
optimum knockout strategies. The successfully created hybrid algorithm is 
applied to the E. coli model dataset. 

Keywords: Artificial Bee Colony, Flux Balance Analysis, Lactate, Gene 
KnockOut, Echerichia Coli. 

1 Introduction  

There is a genetic technique called gene knockout where the one of the organism’s 
genes is being made to inoperative, just like to knock out the specific gene from the 
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organism. This technique is a platform for human to learn about how a gene functions 
based on the sequenced gene. Researchers draw inferences from the difference 
between the knockout organism and normal individuals. 

Besides, the term also refer as creating a new organism as “knocking out” a gene, 
this is essentially opposite of a gene knocking. Double knockout has the meaning of 
two genes being knocked out at the same time. The same meaning goes to triple 
knockout and quadruple knockout which describes the 3 and 4 genes being knocked 
out simultaneously.  

Succinate and its derivatives have been used as common chemicals to synthesize 
polymers, as additives and flavoring agents in foods, supplements for pharmaceuticals, 
or surfactants. Currently, it is mostly produced through petrochemical processes that 
can be expensive and have significant environmental impacts. In fact, the knockout 
solutions that lead to an improved phenotype regarding the production of Succinates 
are not straightforward to identify since they involve a considerable number of 
interacting reactions. 

Lactate and its derivatives have been used in a wide range of food-processing and 
industrial applications like meat preservation, cosmetics, oral and health care products 
and baked goods. Additionally, as lactate can be easily converted to readily 
biodegradable polyesters, it is emerging as a potential material for producing 
environmentally friendly plastics from sugars [1]. 

Several microorganisms have been used to commercially produce lactate [2], such 
as Lactobacillus strains. However, those bacteria also have undesirable traits, such as 
a requirement for amino acids and vitamins which complicates acid recovery. E. coli 
has many advantageous characteristics as a production host, such as rapid growth 
under aerobic and anaerobic conditions and simple nutritional requirements. 
Moreover, well-established protocols for genetic manipulation and a large knowledge 
on this microbe's physiology enable the development of E. coli as a host for 
production of optically pure D- or L-lactate by metabolic engineering [3].  

The first approach to suggest gene deletion strategies was the OptKnock algorithm, 
where mixed integer linear programming (MILP) is used to reach an optimum 
solution. An alternative approach was proposed by the OptGene algorithm that 
considers the application of Evolutionary Algorithms (EAs), EAs are a meta-heuristic 
optimization method, and they are capable of providing solutions in a reasonable 
amount of time. 

Unfortunately, for the above approaches, they may often get stuck at a local 
minimum in a multi-modal error. Based on this, above algorithms might not perform 
well in global and local optimization which will lead to local minimum and 
inefficiently used for multivariable and multimodal functions optimization [4].  
Therefore, a combination of Artificial Bee Colony (ABC) and Flux Balance Analysis 
(FBA) has been looked into for identifying the gene knockout strategies for obtaining 
high yields of Succinate in E. coli. The developed algorithm is evaluated in term of 
the production of biochemical in E. coli. 

The successfully created hybrid algorithm has contributed to the gene knockout 
field where it can design the experiment protocol so that biochemical production will 
be increased.  Before this, there is no research is being carried out for the hybrid of 
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these two algorithms. Moreover, the newly formed hybrid algorithm is applied on the 
E. coli dataset. 

2 Methods 

2.1 Hybrid of Artificial Bee Colony and Flux Balance Analysis 

In this section, we describe the details of the proposed ABCFBA in which ABC is 
newly combined with FBA to identify optimal gene knockout strategies. In essence, 
the proposed algorithm consists of five main steps:  

1.  Initialize population 
2.  Employed phase 
3.  Onlooker phase 
4.  Memorize the best 
5.  Scout phase 

Figure 1 shows the flow of ABCFBA. Figure 2 shows the comparison of ABCFBA 
and ABC, rectangles that in red color showed the difference steps between the 
original ABC and ABCFBA. The flow chart on the left side indicates the original 
ABC algorithm while the flow chart on the right side is the ABCFBA. As compare 
with the original ABC, this study’s method has integrated the FBA into ABC for  
the purpose of fitness calculation which main for identifying optimum knockout 
strategies in E. coli model.  

Originally, the ABC is main for food foraging of honey bees, therefore, its fitness 
calculation is the nectar amounts calculation while ABCFBA is focusing on the gene 
knockout identification, so its fitness calculation step will be replaced by FBA. 

Based on Edwards and Palsson [5], FBA was developed to analyze the metabolic 
capabilities of a cellular system based on the mass balance constraints.  The mass 
balance constraints in a metabolic network can be represented mathematically by a 
matrix equation as follow:  

S · v = 0 (1) 

The matrix S is the mxn stoichiometric matrix, where m is the number of metabolites 
and n is the number of reaction in the network. The vector v represents all fluxes in 
the metabolic network, including the internal fluxes, transport fluxes and the growth 
flux. 

For the E.coli metabolic network, the number of fluxes was greater than the 
number of mass balance constraints; thus, there were multiple feasible flux 
distributions that satisfied the mass balance constraints, and the solutions were 
confined to the null space of the matrix S. as follow: 

 αi ≤ vi ≤ βi  (2) 
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Fig. 1. Flow of ABCFBA 

The linear inequality constraints were used to enforce the reversibility of each 
metabolic reaction and the maximal flux in the transport reactions. The reversibility 
constraints for each reaction are indicated online. The transport flux for inorganic 
phosphate, ammonia, carbon dioxide, sulfate, potassium, and sodium was unrestrained 
(αi = -∞ and βi = ∞). 

The transport flux for the other metabolites, when available in the in silicon 
medium, was constrained between zero and the maximal level (0 ≤ vi ≤ vimax). The 
vimax values used in the simulations are noted for each simulation. When a 



 A Hybrid of ABC and FBA for Identifying Optimum Knockout Strategies 131 

 

metabolite was not available in the medium, the transport flux was constrained to 
zero. The transport flux for metabolites capable of leaving the metabolic network was 
always unconstrained in the net outward direction.  

 

 

Fig. 2. Comparison of ABCFBA and ABC 

The intersection of the nullspace and the region defined by the linear inequalities 
defined a region in flux space that we will refer to as the feasible set and the feasible 
set defined the capabilities of the metabolic network subject to the imposed cellular 
constraints. It should be noted that every vector v within the feasible set is not 
reachable by the cell under a given condition due to other constraints not considered 
in the analysis. The feasible set can be further reduced by imposing additional 
constraint and in the limiting condition where all constraints are known, the feasible 
set may reduce to a single point. 

A particular metabolic flux distribution within the feasible set was found using 
Linear Programming (LP).  LP identified a solution that minimized a metabolic 
objective function, and was formulated as shown below: 

 Minimize - Z (3) 

where Z = ∑ ci vi = < c • v>            
The vector c was used to select a linear combination of metabolic fluxes to indicate 

in the objective function. Herein, c was defined as the unit vector in the direction of 
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the growth flux, and the growth flux was defined in terms of the biosynthetic 
requirement. 

 ∑ ݀݉ • ܺ݉௔௟௟ ௠        Vgrow             Biomass           (4) 

where dm is the biomass composition of metabolite Xm, and the growth flux was 
modeled as a single reaction that converts all the biosynthetic precursors into biomass. 

As compare to other well-known metabolic modeling approaches, FBA is different 
in term of accuracy, this is because instead of predicting the metabolic behavior, it 
defines the ‘best’ the cell can do. FBA assumes that the regulation is such that 
metabolic behavior is optimal but not directly considers regulation or the regulatory 
constraints. Therefore, the results are generally consistent. However, it is only valid 
for a system that has evolved toward optimally.  

In mutant strains, the regulation of the metabolic network has not evolved to 
operate in an optimal fashion. Because of this, it will cause a problem when coupling 
to highly parallel experimental programs, such as large-scale mutation studies.  

FBA is an effective tool for the analysis of metabolic networks. FBA can 
complement the uncertainly and incompleteness of metabolic data, and thereby 
provide a better characterization of cellular phenotypes. Recent advances in FBA 
include the prediction of flux distribution of engineered cells, investigation of a 
cellular objective and the design of a mutant strain with desired properties. 

Although the development of analytic techniques has facilitated the generation of 
dynamic profiles of metabolites, such data sets are not accurate enough for generating 
large-scale kinetic models. FBA has its pro and con in analyzing the biological 
network. 

Initialize Population 
The system start with create a population with the matrix of 95x500, since there are 
95 reactions in the E. coli model and the dimension of the matrix where it must more 
than the number of reactions which is 500.  This matrix was essentially create with 
all value 0’s, then the value 1’s were randomly distributed among them. The 1’s 
represent those reaction that will be knockout while the 0’s represent those reaction 
that cannot be knockout.  

After the population has been created, each line of the columns, the population of 
the possibility of the reaction knockout, will be the inputs of the FBA for calculating 
the fitness. The system will return growth rate which determine whether the cell still 
survive after the deletion occurs where the value must more than 0.1. Another value 
that will return is the minimum production which represents the minimum production 
of biochemical after the deletion occurs where it must be more than -1e-3 to prevent 
the very small values from being considered as improvement. 

Employed Phase  
As for this stage, it is performing a job of randomly creating a new population where 
it is near the original population.  For the 500 populations that created from the first 
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stage, the system will randomly create another 500 populations. Then, the greedy 
algorithm will being applied so that those with the smaller value of fitness will be 
abandoned. The new generated population will formed with the better fitness values. 

The greedy algorithm is based on the evaluation of a pre-defined maximum 
number of solutions that are obtained in the neighborhood of the best ones found and 
by using exhaustive search when no local search can be performed. 

There might have some original populations have the higher fitness value than 
newly formed possibilities. This showed the current solution cannot be improved. 
Therefore, the control parameters, trial, will increase by 1. Otherwise, it will remain 
as 0. 

Onlooker Phase  
The onlooker phase basically is randomly generating other neighborhoods, but it has a 
little bit different with employed phase. This phase started with calculating the 
probability value p for the fitness, fiti values by using the formula: 

                      Pi =            fiti 

 ∑ ಴ೄమ௜ୀଵݐ݂݅      

(5) 

The highest values of that specify possible reaction knockout will as the input of this 
phase, the system will randomly generate another new population and compare with 
the old one. If newly formed has higher fitness than the older formed, it will replace 
the older, vice-versa situation happen on the other hands.  

Then, the system will recalculate the value p to decide the next population that will 
be replaced or remained. This phase will iterate till 500 times. Those populations that 
cannot be replaced will increase the trial value by 1 while those have replaced will set 
the trial to 0. 

This will result the good potential population will become better while the bad 
population will being abandoned forever as the p values of good populations will keep 
increasing while the bad populations’ p values will keep decreasing since the fitness 
value is divided by sum of all the fitness values for every population.   

Memorize the Best 
After gone through the three phases, the 500 populations will be the input for this 
stage. The best population will be selected based on the fitness value by using Greedy 
Selection algorithm. Only one population will remain as result where it represents the 
best reactions knockout list in term of highest growth rate and highest yields of target 
biochemical productions. 

Scout Phase  
If the population cannot be improved where its predetermined number of trial has 
exceed the limit=100, the population considered exhausted, it will be abandoned. The 
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While for lb and up, they stands for the lower boundary and upper boundary of the 
95 reactions respectively. Last but not least, the rxnNames is the full names of the 95 
reactions that can be understand by human language. 

The target reaction in this research is lactate. Table 1 shows 3 sets of knockout list 
as result after 50 runs. The deletion of gene adhE which formed enzyme Alcohol 
dehydrogenase (ethanol) will increase the production of Lactate to 18.0738 mol per 
hour. The growth rate of the E.coli is 0.1186 indicates the cells still survived after the 
deletion. According to Q. Hua et al. [6], mutation in gene such adhE in the anaerobic 
environment, the lactate secretion will significantly increase. Gene adhE is catalyzing 
the reduction of acetyl-CoA to ethanol. After the deletion of adhE, the more highly 
reduced fermentation byproduct ethanol cannot be produced, NAD+ regeneration will 
mainly depend on the reduction pathway of pyruvate to lactate. Therefore the Lactate 
production will keep on increasing. 

The deletion of genes ackA and adhE has the same lactate production as previous 
deletion, 18.0738 mol per hour. Although the lactate production remains the same but 
the growth rate for this deletion is higher than the previous deletion, which is 0.1253 if 
compare to 0.1186. L. Zhou. et al. [7]’s study stated in strain B0013, acetate is the 
main byproduct, the encoding gene (ackA) was initially deleted to reduce acetate yield 
and to increase lactate yield. Acetate kinase catalyzes the conversion of pyruvate via 
acetyl coenzymeA (CoA) and acetyl-phosphate to acetate. By deleting gene ackA, the 
main pathway for acetate production in E. coli has been restricted. Since the inhibitor 
of lactate production was disappear, then lactate will be produced significantly. 

Table 1. KnockOuts list for the target reaction of Lactate in E.coli 

KnockOuts Enzyme Lactate (gram-
glucose.hour)-1 

Growth Rate  
(h-1) 

1 NAD + 1 ETOH 
<==> 1 NADH + 1 H 

+ 1 ACALD 

Alcohol 
dehydrogenase 

(ethanol) 

18.0738 0.1186 

ACTP + ADP <== > 
AC + ATP 

1 NAD + 1 ETOH 
<==> 1 NADH + 1 H 

+ 1 ACALD 

Acetate kinase 
Alcohol 

dehydrogenase 
(ethanol) 

18.0738 0.1253 

FADH2 + Fumarate 
<==> FAD + SUCC 

Fumarate reductase 18.0738 0.1253 

 
The deletion of gene frdA, Fumarate reductase, has generated 18.0738 mol of 

lactate per hour, and the growth rate is 0.1253. Both biomass and growth rate achieved 
the same amount with the second deletion even through both deletions are not the 
same. Based on the study of Y. Zhu et al. [8], accumulation of succinate was prevented 
by knockout of gene frdA. During the anaerobic respiration, menaquinol-fumarate 
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oxidoreductase (QFR) is used for succinate production. Since the production of 
succinate being prevented, the lactate production increase significantly. 

For the obtained results, three of them are having the same Lactate production 
18.0738 with different growth rate.  All the obtained results have proved with the wet 
laboratory results that the predicted knockout list has increased the biochemical 
production in the industry. This also proved that the newly formed hybrid algorithm 
has good performance in identifying the gene knockout list. 

Overall, the obtained results are consistent. This is because ABC algorithm has the 
advantages of simple, high robustness, fast convergence, high flexibility and fewer 
control parameters. Hence, it solved the multidimensional and multimodal optimization 
problems.  

4 Conclusions 

As a conclusion, our proposed hybrid algorithm showed a better performance than the 
previous gene knockout tools such as OptKnock and OptGene in term of the gene 
knockout identification for producing high yields of succinate and lactate in E,coli. 
ABC algorithm has the advantages of simple, high robustness, fast convergence, high 
flexibility and fewer control parameters. In the future work, another new data set was 
suggested to put in as to test the feasibility of this newly develop algorithm. Besides, 
other intelligent optimization algorithms like ants colony, particle swarm optimization 
(PSO) were encouraged to replace the artificial bee colony algorithm, so that by 
comparing these algorithms, a better algorithm will be found. 
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