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Abstract. Driven to discover the vast information and comprehend the 
fundamental mechanism of gene regulations, gene regulatory networks (GRNs) 
inference from gene expression data has gathered the interests of many 
researchers which is otherwise unfeasible in the past due to technology 
constraint. The dynamic Bayesian network (DBN) has been widely used to infer 
GRNs as it is capable of handling time-series gene expression data and 
feedback loops. However, the frequently occurred missing values in gene 
expression data, the incapability to deal with transcriptional time lag, and the 
excessive computation time triggered by the large search space, are attributed to 
restraint the effectiveness of DBN in inferring GRNs from gene expression 
data. This paper proposes a DBN-based model (IST-DBN) with missing values 
imputation, potential regulators selection, and time lag estimation to address 
these problems. To assess the performance of IST-DBN, we applied the model 
on the E. coli SOS response pathway time-series expression data. The 
experimental results showed IST-DBN has higher accuracy and faster 
computation time in recognising gene-gene relationships when compared with 
existing DBN-based model and conventional DBN. We also believe that the 
ensuing networks from IST-DBN are applicable as a common framework for 
prospective gene intervention study.  

Keywords: Dynamic Bayesian network, missing values imputation, time-series 
gene expression data, gene regulatory networks, network inference. 

1 Introduction 

In the post-genomic era, aided by the breakthroughs in technology, researchers have 
begun to shift the research paradigm from the classical reductionism to the modern 
holism, wherein biological systems and experimental design are viewed as a whole 
instead as collections of parts [1]. One of the innovations conceived in such era, the 
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DNA microarray technology, which is capable of representing the expression of 
thousands of genes under various circumstances (otherwise known as gene expression 
profiling), has allowed the development of numerous new experiments for exploring 
into the complex system of gene expression and regulation [2]. Since its conception, 
various organisms and mammalian cells have been profiled, such as S. cerevisiae [3], 
human cancerous tissue [4], and E. coli [5]. The consequent output, commonly known 
as gene expression data, comprises immense information such as the robustness and 
behaviours denoted by the cellular system under diverse situations [6], assists us in 
understanding the underlying mechanism of gene expression and regulation.  

From a computational perspective, a GRN can be represented as a directed graph 
containing nodes (genes) and edges (interaction/relationship). In recent years, various 
computational methods have been developed to infer GRNs from gene expression 
data. Among them, Bayesian network (BN) [7], which uses probabilistic correlation 
to distinguish relationships between a set of variables, was popular in GRNs 
inference. This is mainly due to several factors: BN is capable of working on local 
elements, assimilating other mathematical models to avert data overfitting, and 
merging prior knowledge to fortify the causal relationships. Nonetheless, BN also has 
two disadvantages: it is unable to deal with time-series gene expression data and 
construct feedback loops. 

From a biological perception, feedback loops actually embody the homeostasis 
procedure in living organisms. Hence, to take account of the feedback loops, 
researchers have developed the dynamic Bayesian network (DBN) [8] as a replacement 
to tackle BN’s weaknesses. However, the scattering missing values commonly found 
in gene expression data could affect more than 90% of the genes and subsequently 
negatively influencing downstream analysis and inferring approaches [9]. Furthermore, 
in identifying gene-gene relationships, conventional DBN generally comprises all 
genes into the subsets of potential regulators for each target gene, and thus instigated 
the large search space and the excessive computational time [10]. To address the two 
problems, Chai et al. [11] suggested a three-step DBN-based model (ISDBN) with 
missing values imputation and potential regulators selection, and the proposed model 
showed better performance than conventional DBN in GRNs inference. 

Yet, ISDBN and conventional DBN is still not adept enough to effectively take 
account of the transcriptional time lag, in which a time delay exists before the target 
genes are being expressed into the system. This shortcoming hampers the accuracy of 
DBN-based approaches in GRNs inference. To solve this problem, we proposed to 
further improve the aforesaid DBN-based model with time lag estimation (IST-DBN) 
which would take account of the transcriptional time lag based on the time difference 
between the initial changes of expression level of potential regulators and their target 
genes. 

2 Methods 

Essentially, IST-DBN involves four main steps: missing values imputation, potential 
regulators selection, time lag estimation and DBN inference. Fig. 1 illustrates the 
schematic overview of IST-DBN.  
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Fig. 1. Schematic overview of IST-DBN 

2.1 Missing Values Imputation 

Missing values in gene expression data can occur for numerous reasons. For example, 
small contaminations would corrupt the microarray slides at multiple spots as they are 
very tiny and packed together. These questionable spots are then labelled as missing 
after scanning and digitalising the microarray slides. Many imputation methods have 
been established to impute missing values by exploring and utilising the underlying 
expression data structure and pattern. In particular, based on the local similarity 
structure, LLSimpute imputes missing values by constructing a linear combination of 
similar genes and target genes with missing values through a similarity measure [12]. 
This method entails two steps. Firstly, k genes are selected by the L2-norm, where k is 
a positive integer that expresses the number of coherent genes to the target gene. As 
an example, to impute a missing value ݃ found at x11 in a m×n matrix X, the k-
nearest neighbour gene vectors for x1,  ࢜௦೔T א ଵൈ௡   1ࢄ ൑ ݅ ൑ ݇                                                    ሺ1ሻ 

are computed, whereby the gene expression data is defined as a m×n matrix X (m is 
the number of genes, n is the number of observations), and x1 signifies the row of the 
first gene with n observations. si is a list of k-nearest neighbour genes vectors, which 
actually corresponds to the i-th row of the transpose vector vT. The following step 
implicates regression and estimation of the missing values. A matrix, ࡭ א  ௞ൈሺ௡ିଵሻࢄ
wherein the k rows of the matrix contains vector v, and two vectors, ࢈ א ࢝ ௞ൈଵ andࢄ א  ሺ௡ିଵሻൈଵ, are then formed. The vector b encloses the first element of k vectorsࢄ
vT, whereas vector w comprises n – 1 elements of vector x1. A k-dimensional 
coefficient vector y is subsequently computed such that the least square problem is 
minimised as min࡭|࢟T࢟ െ   ଶ                                                     ሺ2ሻ|࢝
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Let y* to denote the vector wherein the square is minimised such that ࢝ ؄ כ࢟T࡭ ൌ ଵࢇכଵ࢟ ൅ כଶ࢟ ଶࢇ ൅ ڮ ൅ כ௞࢟   ௞                                      ሺ3ሻࢇ

where ࢇ௜ א ௞ൈଵ࡭ , and thus, the missing value ݃  could be imputed as a linear 
combination of coherent genes such that ݃ ൌ ࢟T࢈ ൌ   ሺ4ሻ                                                      ࢝Tሻᇱ࡭Tሺ࢈
where ( AT ) Ԣ exists as the pseudoinverse of AT [12].  

2.2 Potential Regulators Selection 

In most occurrences, the expression level of regulators (also known as TFs, 
transcriptional factors) would vary before or simultaneously with their target genes 
[13]. By exploiting this information, we formulated an algorithm which would shrink 
the search space by confining the number of potential regulators for each target gene. 
Firstly, a threshold for categorising the status of gene expression values (e.g. up- or 
down-regulation) is determined through either experiments or the average expression 
level of the genes. In this paper, the threshold for up-regulation and down-regulation 
are decided based on the baseline cut-off of the gene expression values. As such, for 
the E. coli dataset used in this paper, the threshold is determined as ≥1.4 for up-
regulation and ≤0.7 for down-regulation. The gene expression values are successively 
categorised into one of the three states: up-, down- and normal regulation. The three 
states specify whether the expression value is greater than, lower than or similar to the 
threshold. Subsequently, the precise time units of initial up-regulation and down-
regulation of each gene are chosen, and genes with preceding fluctuations in 
expression level are encompassed into the subset of potential regulators against genes 
with later expression fluctuations. As genes with significantly late expression 
fluctuations could have involved a large number of potential regulators, the maximum 
time gap for preceding expression fluctuations is constrained to five time units. This 
is to avert choosing potential regulators for a target gene from the entire gene 
expression dataset. To further elucidate this algorithm, let’s assume two hypothetical 
genes: gene P and gene R. Gene P encountered an initial expression change at time T1 
prior to the initial expression change of gene R at time T2, hence gene P is included 
into the subset of potential regulators for gene R (Fig. 2). The same procedure applies 
to other up- or down-regulated genes which satisfy the criteria. 

2.3 Time Lag Estimation 

Transcriptional time lag is the time interval between the expression of the regulators and 
the expression of their target genes. Remember the two hypothetical genes, P and R,  
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Fig. 2. Schematic overview of potential regulators selection 

whereby gene P regulates gene R. Gene P starts expression change at time T1 and gene 
R has an expression change at T2. The time difference between T1 and T2 is regarded as 
the transcriptional time lag. In inferring GRNs from gene expression data, conventional 
DBN aligns regulator-gene pairs based on the statistical analysis of their probabilistic 
strength between time units. Nonetheless, DBN usually pairs up regulators with their 
target genes by only one time unit, although the actual transcriptional time lag could 
have been multiple time units. With such cases, IST-DBN takes consideration of the 
real transcriptional time lag by coupling up potential regulators and their target genes 
based on the time difference between their initial expression fluctuations. For a target 
gene, potential regulators are categorised into different groups based on the time lag 
(e.g. groups of one, two or three time units), mostly due to the fact that a target gene 
could have numerous regulators acting upon it in dissimilar time unit. 

2.4 Dynamic Bayesian Network 

DBN infers time-series gene expression data by observing the values of a set of 
variables at diverse time units. DBN inference typically involves two steps: parameter 
learning and structure learning. In parameter learning, the joint probability 
distribution (JPD) of the variables is calculated based on the Bayes theorem. Let’s 
assume a microarray dataset with m genes and n observations, such that we have a m 
× n matrix X = (x1, …, xm) wherein each row, vector xm = (xm1,…, xmn) embodies a 
gene expression vector observed at time t. The temporal vectors chain relationship is  
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defined as a first-order Markov chain in which only forward edges are permitted. The 
JPD of the model has the overall form of:   

 
  ܲሺ࢞ଵଵ, … , ௠௡ሻ࢞ ൌ  ܲሺ࢞ଵሻܲሺ࢞ଶ|࢞ଵሻ … ܲሺ࢞௜|࢞௜ିଵሻ              (5) 

 
Based on the earlier threshold, the expression values acquired from preceding steps 
are discretised into three categories: -1, 0 and 1, which correspond to down-, normal 
and up-regulation respectively. Each set of potential regulators is subsequently 
distributed into smaller subsets. For instance, in a set of potential regulators 
comprising gene X, and gene Y, the subsets would be {X}, {Y} and {X, Y}. Each of 
the subset and the target gene are then arranged into a data matrix with their 
discretised expression values. The conditional probabilities of each subset of potential 
regulators against their target genes are then calculated. The following step is to look 
for the optimal network structure through a scoring function based on the Bayesian 
Dirichlet equivalence (BDe). The final results are then imported into GraphViz 
(http://www.graphviz.org) for network visualisation and analysis. 

3 Result and Discussion 

3.1 Experimental Data and Setup 

The experimental data involved in this paper is the E. coli SOS response pathway 
gene expression data [14]. The E. coli SOS response pathway is a DNA restoration 
system which reacts to damaged DNA by pausing cell cycle and triggering DNA 
repair [15]. In normal situation, the SOS genes are negatively regulated through the 
binding of the repressor protein, lexA to the promoter region of these genes. When 
DNA is damaged, DNA polymerase is blocked and single-stranded DNA (ssDNA) 
start to accumulate. The sensor of DNA damage, the recA protein, activates by 
binding to these ssDNA. After being activated, the recA protein initiates the self-
cleavage of the lexA repressor. This would cause a drop in lexA level and in turn the 
SOS genes are de-repressed. This remains until the damage is restored, wherein the 
level of activated recA falls, lexA amasses and represses the SOS genes again. This 
dataset comprises 8 genes observed at uniformly spaced 50 time units with 6 minutes 
apart, and also 11.5% missing values (184 out of 1,600 observations). 

The DBN inferring part of IST-DBN is applied under the framework of BNFinder 
[16], while the missing values imputation, potential regulators selection and the time 
lag estimation are applied in MATLAB environment. To assess the performance of 
IST-DBN, the accuracy and computation time of the proposed model is compared 
against ISDBN and DBN (characterised by BNFinder). The accuracy is evaluated by 
comparing the results of the three models to the reputable E. coli SOS response 
pathway by Ronen et al. [14]. All three models are executed using the same hardware 
configuration (3.2GHz Intel Core i3 computer with 2GB main memory) to ensure a 
fair assessment of computation time. Table 1 summarises the results, wherein the first  
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row denotes the network inferred by IST-DBN, the second row denotes the network 
inferred by ISDBN, and the third row denotes the network inferred by DBN. An edge 
shows a relationship between the two linked genes. ‘Correctly inferred relationships’ 
represents the number of relationships which are found in both inferred and 
established networks, ‘sensitivity’ is the rate of correctly inferred relationships, and 
‘specificity’ relates to the rate of correct inference that no relationship exists between 
two genes. 

3.2 Experiment Results 

IST-DBN succeeded in identifying all ten relationships (lexA–recA, lexA–polB, lexA–
umuD, lexA–uvrY, lexA–uvrA, lexA-uvrD, lexA–ruvA, lexA–lexA, recA–recA, and 
recA–lexA) (Fig. 3), whereby ISDBN correctly identified nine relationships and DBN 
only recognised eight relationships. Both IST-DBN and ISDBN outperformed DBN in 
this category, and this is because the effectiveness of DBN was hampered by numerous 
missing values in the original gene expression data. Also, through the alignment of 
regulator-gene pairs based on actual transcription time lag, the causal correlation 
between pairs with greater transcriptional time lag are strengthened, due to the fact that 
IST-DBN reported lesser false positives when compared with ISDBN and DBN (3 
against 6 and 5). IST-DBN registered 100% sensitivity and 83.33% specificity 
compared to ISDBN’s 90% sensitivity and 66.67% specificity. Conversely, DBN 
reported 80% sensitivity and 72.22% specificity. The perfect sensitivity of IST-DBN 
and the relatively significant difference in percentage with the other two models is 
obviously attributed to the relatively small dataset, but we expect that IST-DBN would 
still outperform ISDBN and DBN on larger dataset. All three models were capable of 
identifying at least two self-regulatory loops: recA, which senses DNA damage and 
subsequently self-activate by binding to ssDNA; and lexA, which undergoes self-
cleavage after initiated by the relatively high level of activated recA.  

Four probable situations arise when an edge exist between two genes: correct 
direction and regulation type, correct direction but incorrect regulation type, 
misdirected but correct regulation type, and misdirected and wrong regulation type. 
IST-DBN was able to revise an incorrect relationship type in ISDBN. However, IST-
DBN also contains an incorrect regulation type while ISDBN showed two wrong 
regulation type and one misdirected edges, and conventional DBN reported three 
incorrect regulation type and one misdirected edges. In regard to the computation 
time, IST-DBN demonstrated a computation time of 7 minutes and 56 seconds while 
ISDBN showed a computation time of 8 minutes and 43 seconds. On the contrast, 
DBN recorded 15 minutes and 17 seconds. As the dataset used in this study was 
relatively small, the computation time for IST-DBN and ISDBN do not differ 
drastically, although DBN suffers from longer computation time which is caused by a 
larger search space. We expect that the computation time difference between DBN 
and the other two models would be much more radical with a larger dataset.  



12 L.E. Chai et al.  

 

 

Fig. 3. Inferred E. coli SOS response pathway using IST-DBN. Dash edges (---) indicate down-
regulations and straight-lined edges (—) indicate up-regulations. A cross denotes an incorrect 
inference; a circle denotes an incorrect regulation type; an edge without any attachment is a 
correct inference. 

Table 1. The results of experiment study 

Model Correctly 
predicted 
relationships 

Sensitivity Specificity Computation time 
(HH:MM:SS) 

IST-DBN 10 100.00% 83.33% 00:07:56 

ISDBN 9 90.00% 66.67% 00:08:43 

DBN 8 80.00% 72.22% 00:15:17 

4 Conclusion 

Traditional DBN has been troubled by three main problems: the missing values 
commonly found in gene expression data, the comparatively large search space due to 
encompassing all genes as potential regulators against target genes, and the absence of 
a method to consider transcriptional time lag. ISDBN was put forth by Chai et al. [11] 
to tackle the first two problems: Missing values are imputed based on linear grouping 
of analogous genes, and the search space is diminished by restricting to certain 
potential regulators which fulfill the criteria. Nevertheless, this model is unable to 
deal with transcription time lag and thus, we proposed an enhanced version of ISDBN 
with time lag estimation (known as IST-DBN) to solve the third problem. Rather than 
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pairing up with the default one time unit, IST-DBN utilises the actual time difference 
between expression changes to align regulator-gene pairs. Therefore, IST-DBN is 
capable of seizing most of the probabilistic connection between genes that possess 
transcriptional time lag greater than one time unit. Based on the E. coli SOS response 
pathway dataset, IST-DBN presented encouraging results in regards to accuracy and 
computation time when matched against ISDBN and traditional DBN. We are 
interested to apply IST-DBN to other datasets, for instance, S. cerevisiae or A. 
thaliana, to examine the performance consistency of IST-DBN. 
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