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Abstract 

 

Gene expression data have been analyzing by many researchers by using a 

range of computational intelligence methods. From the gene expression data, 

selecting a small subset of informative genes can do cancer classification. Nev-

ertheless, many of the computational methods face difficulties in selecting small 

subset since the small number of samples needs to be compared to the huge 

number of genes (high-dimension), irrelevant genes and noisy genes. Hence, to 

choose the small subset of informative genes that is significant for the cancer 

classification, an enhanced binary particle swarm optimization is proposed. 

Here, the constraint of the elements of particle velocity vectors is introduced 

and a rule for updating particle’s position is proposed. Experiments were per-

formed on five different gene expression data. As a result, in terms of classifica-

tion accuracy and the number of selected genes, the performance of the intro-

duced method is superior compared to the conventional version of binary parti-

cle swarm optimization (BPSO). The other significant finding is lower running 

times compared to BPSO for this proposed method.   

Keywords: Binary particle swarm optimization, gene selection, gene expres-

sion data, optimization. 
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1 Introduction 

Advances in microarray technology allow scientists to measure the expression levels 

of thousands of genes simultaneously in biological organisms and have made it possi-

ble to create databases of cancerous tissues. It finally produces gene expression data 

that contain useful information of genomic, diagnostic, and prognostic for researchers 

[3]. Thus, there is a need to select informative genes that contribute to a cancerous 

state [5]. However, the gene selection process poses a major challenge because of the 

following characteristics of the data: the huge number of genes compared to the small 

number of samples (high-dimensional data), irrelevant genes, and noisy data. To 

overcome this challenge, a gene selection method is used to select a subset of infor-

mative genes that maximizes classifier’s ability to classify samples more accurately 

[6]. In computational intelligence domains, gene selection is called feature selection.  

Recently, several gene selection methods based on particle swarm optimization 

(PSO) have been proposed to select informative genes from gene expression data 

[4],[7]-[10]. PSO is a new evolutionary technique proposed by Kennedy and Eberhart 

[1]. Shen et al. have proposed a hybrid of PSO and tabu search approaches for gene 

selection [7]. However, the results obtained by using the hybrid method are less 

meaningful since the application of tabu approaches in PSO is unable to search a 

near-optimal solution in search spaces. Next, Li et al. have introduced a hybrid of 

PSO and genetic algorithms (GA) for the same purpose [4]. Unfortunately, the accu-

racy result is still not high and many genes are selected for cancer classification since 

there are no direct probability relations between GA and PSO.  

Next, Chuang et al. proposed an improved binary PSO [8]. 100% classification ac-

curacy in many data sets had been yielded by using the proposed method, but it util-

ized a large number of selected genes (large gene subset) to obtain the high accuracy. 

This method used a large number of genes because the global best particle was reset 

to the zero position when its fitness values did not change after three consecutive 

iterations. Chuang et al. [9],[10] introduced a combination of tabu search and PSO for 

gene selection [9], and currently they proposed a hybrid of BPSO and a combat GA 

for the same purpose [10]. However, both proposed approaches still need a high num-

ber of selected to result high classification accuracy. A significant weakness was 

found resulting from the combination of PSO and tabu search or a combat GA which 

did not share probability significance in their processes. Generally, the PSO-based 

methods are intractable to efficiently produce a small (near-optimal) subset of infor-

mative genes for high classification accuracy [4],[7]-[10]. This is mainly because the 

total number of genes in gene expression data is too large (high-dimensional data). 

The diagnostic goal is to develop a medical procedure based on the least number of 

possible genes that needed to detect diseases. Thus, we introduce an enhancement of 

binary PSO based on the proposed constraint and rule (CPSO) to select a small (near-

optimal) subset of informative genes that is most relevant for the cancer classification. 

The small subset means that it contains the small number of selected genes. In order 

to test the effectiveness of our proposed method, we apply CPSO to five gene expres-

sion data sets, including binary-classes and multi-classes data sets. 



This paper is organized as follows. In Section 2 and Section 3, we briefly describe 

the conventional version of binary PSO and CPSO, respectively. Section 4 presents 

data sets used and experimental results. Section 5 summarizes this paper by providing 

its main conclusions and addresses future developments. 

2 The Conventional Version of Binary PSO (BPSO) 

BPSO is initialized with a population of particles. At each iteration, all particles 

move in a problem space to find the optimal solution. A particle represents a potential 

solution in an n-dimensional space. Each particle has position and velocity vectors for 

directing its movement. The position vector and velocity vector of the ith particle in 

the n-dimension can be represented as X
i
= (x

i

1,x
i

2,...,x
i

n ) and V
i
= (v
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1,v
i

2,...,v
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n ) , re-

spectively, where x
i

d Î{0,1};  i=1,2,..m (m is the total number of particles); and 

d=1,2,..n (n is the dimension of data) [2]. v
i

d
 represent an element of particle velocity 

vectors. It is a real number for the d-th dimension of the particle i, where the maxi-

mum v
i

d
, V
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= (1/ 3)´n. 

In gene selection, the vector of particle positions is represented by a binary bit 

string of length n, where n is the total number of genes. Each position vector (X
i
) 

denotes a gene subset. If the value of the bit is 1, it means that the corresponding gene 

is selected. Otherwise, the value of 0 means that the corresponding gene is not se-

lected. Each particle in the t-th iteration updates its own position and velocity accord-

ing to the following equations: 
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 are the acceleration constants in the interval [0,2]. 
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d (t) ~U (0,1)  are random values in the range [0,1] that sampled from a 

uniform distribution. Pbest
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i

2(t),..., pbest
i

n(t))  and 

Gbest(t) = (gbest1(t),gbest2(t),...,gbestn (t))  represent the best previous position of 

the ith particle and the global best position of the swarm (all particles), respectively. 

They are assessed base on a fitness function. Sig(v
i

d (t +1)) is a sigmoid function 



where  Sig(v
i

d (t +1))Î [0,1]. w(t) is an inertia weight and initialized with 1.4. It is 

updated as follows: 

w(t +1) =
(w(t)-0.4)´ (MAXITER- Iter(t))

(MAXITER+0.4)

 
(4) 

where MAXITER  is the maximum iteration (generation) and Iter(t)  is the current 

iteration.  

3 An enhancement of Binary PSO (CPSO) 

Almost all previous works of gene expression data researches have selected a subset 

of genes to obtain excellent cancer classification. Therefore, in this article, we pro-

pose CPSO for selecting a near-optimal (small) subset of genes. It is proposed to 

overcome the limitations of BPSO and previous PSO-based methods [4],[7]-[10]. 

CPSO in our work differs from BPSO and the PSO-based methods on two parts: 1) 

we propose the constraint of elements of particle velocity vectors; 2) we introduce a 

rule for updating ( 1)d

ix t  , whereas BPSO and the PSO-based methods have used 

the original rule (Eq. 3) and no constraint of elements of particle velocity vectors. The 

constraint and rule are introduced in order to: 

1. increase the probability of x
i

d (t +1) = 0  (P(x
i

d (t +1) = 0)).  

2. reduce the probability of ( 1) 1d

ix t    ( ( ( 1) 1))d

iP x t   . 

The increased and decreased probability values cause a small number of genes are 

selected and grouped into a gene subset. ( 1) 1d

ix t    means that the corresponding 

gene is selected. Otherwise, ( 1) 0d

ix t    represents that the corresponding gene is 

not selected. 

The constraint of elements of particle velocity vectors and the rule are proposed as 

follows: 
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Theorem 1. The constraint of elements of particle velocity vectors and the rule in-

crease P(x
i

d (t) = 0)  because the minimum value for P(x
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d (t) = 0)  is 0.5 when 

v
i

d (t) = 0  (minP(x
i

d (t) = 0) ³ 0.5). Mean while, they decrease the maximum value 

for  P(x
i

d (t) =1)  to 0.5 (maxP(x
i

d (t) =1) £ 0.5).  Therefore, if v
i

d (t) > 0,  then 

P(x
i

d (t) = 0) >> 0.5 and P(x
i

d (t) =1)<< 0.5.  

Proof.  (Þ)  Figure 1 shows that a) The constraint of elements of particle velocity 
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in which A(X
i
)Î 0,1é

ë
ù
û  is leave-one-out-cross-validation (LOOCV) classification 

accuracy that uses the only genes in a gene subset (X
i
).  This accuracy is provided by 

support vector machine classifiers (SVM). R(X
i
)  is the number of selected genes in 

X
i
. n  is the total number of genes for each sample. w

1
 and w

2
 are two priority 

weights corresponding to the importance of accuracy and the number of selected 

genes, respectively, where w
1
Î [0.1,0.9] and w

2
=1-w

1
.  

 

 

 



 

4 Experiments 

4.1 Data Sets and Experimental Setup 

The gene expression data sets used in this study are summarized in Table 1. They 

included binary-classes and multi-classes data sets. Experimental results that pro-

duced by CPSO are compared with an experimental method (BPSO) for objective 

comparisons. Additionally, the latest PSO-based methods from previous related works 

are also considered for comparison with CPSO [4],[7]-[10]. Firstly, we applied the 

gain ratio technique for pre-processing in order to pre-select 500-top-ranked genes. 

These genes are then used by CPSO and BPSO. Next, SVM is used to measure 

LOOCV accuracy on gene subsets that produced by CPSO and BPSO. For LOOCV, 

one sample in the training set is withheld and the remaining samples are used for 

building a classifier to classify the class of the withheld sample. By cycling through 

all the samples, we can get cumulative accuracy rates for classification accuracy of 

methods. In this research, LOOCV is used for measuring classification accuracy due 

to the small number of samples in gene expression data. Several experiments are in-

dependently conducted 10 times on each data set using CPSO and BPSO. Next, an 

average result of the 10 independent runs is obtained. High LOOCV accuracy, the 

small number of selected genes, and low running time are needed to obtain an excel-

lent performance.  
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Fig. 1.   The areas of  P(x
i

d (t) = 0)  and  P(x
i

d (t) =1)  based on sigmoid functions in a) 

CPSO; b) BPSO. The blue and green colors show the areas for P(x
i

d (t) = 0)  and 

P(x
i

d (t) =1)  respectively, and whereas the red color indicates the part of unsatisfied 

v
i

d (t) ³ 0  
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Table 1. The summary of gene expression data sets. 

Data set  No. classes No. samples  No.  genes Source 

Leukemia 
2 (ALL and 

AML) 

72 (67 ALL 

and 25 AML) 
7,129 

http://www.broad.mit.edu/cgi

-bin/cancer/datasets.cgi 

Lung  

2 (MPM 

and 

ADCA) 

181 (31 MPM 

and 150 

ADCA) 

12,533 
http://chestsurg.org/publicati

ons/2002-microarray.aspx. 

MLL 

3 (ALL, 

MLL, and 

AML) 

72 (24 ALL, 

20 MLL, and 

28 AML) 

12,582 
http://www.broad.mit.edu/cgi

-bin/cancer/datasets.cgi 

SRBCT 

4 (EWS, 

RMS, NB, 

and BL) 

82 (28 EWS, 

25 RMS, 18 

NB, and 11 

BL) 

2,308 
http://research.nhgri.nih.gov/

microarray/Supplement/ 

Colon 
2 (Normal 

and tumor) 

62 (22 normal 

and 40 tumor) 
2,000 

http://microarray.princeton.e

du/oncology/affydata/index.h

tml 

Note: 

MPM = malignant pleural mesothelioma. 

ADCA = adenocarcinoma. 

ALL = acute lymphoblastic leukemia. 

 

MLL = mixed-lineage leukemia. 

AML = acute myeloid leukemia. 

SRBCT = small round blue cell tumors. 

4.2 Experimental Results 

Based on the standard deviation of classification accuracies in Table 2, results that 

produced by CPSO were almost consistent on all data sets. Interestingly, all runs have 

achieved 100% LOOCV accuracy with less than 50 selected genes on the SRBCT 

data set. Moreover, over 97% classification accuracies have been obtained on other 

data sets, except for the colon data set. This means that CPSO has efficiently selected 

and produced a near-optimal gene subset from high-dimensional data (gene expres-

sion data). 



 

Figure 2 shows that the averages of fitness values of CPSO increase dramatically 

after a few generations on all the data sets. A high fitness value is obtained by a com-

bination between a high classification rate and a small number (subset) of selected 

genes. The condition of the proposed constraint of elements of particle velocity vec-

tors that should always be positive real numbers started in the initialization method, 

and the new rule for updating particle’s positions provoke the early convergence of 

CPSO. In contrast, the averages of fitness values of BPSO was no improvement until 

the last generation due to P(x
i

d (t) = 0) = P(x
i

d (t) =1) = 0.5.   

For an objective comparison, CPSO is compared with BPSO. According to the Ta-

ble 3, overall, it is worthwhile to mention that the classification accuracy and the 

number of selected genes of CPSO are superior to BPSO in terms of the best, average, 

and standard deviation results on all the data sets. The classification accuracies of 

BPSO and CPSO were same on the lung and SRBCT data sets. However, the number 

of selected genes of BPSO was higher than CPSO to achieve the same accuracy.  

CPSO also produces smaller numbers of genes and lower running times compared 

to BPSO on all the data sets. CPSO can reduce its running times because of the fol-

lowing reasons: 

 CPSO selects the smaller number of genes compared to BPSO;  

Table 2. Experimental results for each run using CPSO on the leukemia, colon, lung, MLL, and 

SRBCT data sets 

Run# 

Leukemia Colon Lung MLL SRBCT 

#Acc 

(%) 

# 

Select-

ed 

Genes 

#Acc 

 (%) 

#Select-

ed 

Genes 

#Acc 

 (%) 

# 

Selected 

Genes 

#Acc 

 (%) 

#Select-

ed 

Genes 

#Acc 

 (%) 

#Select-

ed 

Genes 

1 100 10 90.32 4 99.45 9 97.22 32 100 20 

2 100 5 90.32 6 99.45 9 98.61 113 100 48 

3 100 3 88.71 28 99.45 7 97.22 38 100 42 

4 98.61 9 91.94 10 99.45 30 97.22 28 100 50 

5 98.61 9 88.71 8 99.45 8 97.22 6 100 21 

6 100 31 88.71 8 99.45 9 95.83 6 100 37 

7 98.61 11 88.71 7 98.90 8 97.22 11 100 32 

8 98.61 10 88.71 7 99.45 5 97.22 37 100 27 

9 98.61 8 88.71 5 99.45 15 97.22 88 100 21 

10 98.61 9 88.71 130 99.45 13 97.22 33 100 50 

Aver-

age 

± S.D. 

99.17 

± 

0.72 

10.50 

± 7.61 

89.36 

± 

1.13 

21.30 

± 38.80 

99.39 

± 

0.15 

11.30 

± 7.17 

97.22 

± 

0.66 

39.20 

± 35.04 

100 

± 0 

34.80 

± 12.30 

Note: Results of the best subsets is shown in shaded cells. A near-optimal subset that produces the highest classification accura-

cy with the smallest number of genes is selected as the best subset. #Acc and S.D. denote the classification accuracy and the 

standard deviation, respectively, whereas #Selected Genes and Run# represent the number of selected genes and a run number, 

respectively.  

 



 The computation of SVM is fast because it uses the small number of features 

(genes) that selected by CPSO for classification process. 

 

We also compare our work with previous related works that used PSO-based 

methods in their proposed methods [4],[7]-[10]. It is shown in Table 4. For all the 

data sets, the averages of the number of selected genes of our work were smaller than 

the previous works. Our work also have resulted the higher averages of classification 

accuracies on the leukemia and SRBCT data sets compared to the previous works. 

However, experimental results produced by Shen et al. were better than our work on 

the colon data set [7]. This is due to the incorporation of tabu search (TS) as a local 

improvement procedure enables the algorithm HPSOTS to overleap local optima and 

show satisfactory performance in classifying cancer classes and reducing the number 

 

Lung Data Set

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Generation

Fi
tn

es
s CPSO

BPSO

 

Colon Data Set

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 50 100 150 200 250 300 350 400 450 500

Generation

Fi
tn

es
s

CPSO

BPSO

 

SRBCT Data Set

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Generation

Fi
tn

es
s CPSO

BPSO

 

MLL Data Set

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Generation

Fi
tn

es
s CPSO

BPSO

 

Leukaemia Data Set

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Generation

Fi
tn

es
s CPSO

BPSO

 

 

Fig. 2.     The relation between the average of fitness values (10 runs on average) and the num-

ber of generations for CPSO and BPSO 

  



of genes. Running time between CPSO and the previous works cannot be compared 

because it was not reported in their articles. 

According to Fig. 2 and Tables 2-4, CPSO is reliable for gene selection since it has 

produced the near-optimal solution from gene expression data. This is due to the pro-

posed constraint of elements of particle velocity vectors and the introduced rule in-

crease the probability x
i

d (t +1) = 0  (P(x
i

d (t +1) = 0)) . The increased probability 

value for x
i

d (t +1) = 0causes the selection of a small number of informative genes 

and finally produces a near-optimal subset (a small subset of informative genes with 

high classification accuracy) for cancer classification. 

 

 

Table 3. Comparative experimental results of CPSO and BPSO 

Data 

Method  

 

Evaluation 

CPSO BPSO 

Best #Ave S.D Best #Ave S.D 

Leu-
kemia 

#Acc (%)  100 99.17 0.72 98.61 98.61 0 

#Genes 3 10.50 7.16 216 224.70 5.23 

#Time  5.26 6.13 1.44 13.86 13.94 0.03 

Colon 

#Acc (%)  91.94 89.36 1.13 87.10 86.94 0.51 

#Genes 10 21.30 38.80 214 231 10.19 

#Time 8.78 9.26 0.70 30.58 30.63 0.27 

Lung 

#Acc (%)  99.45 99.39 0.18 99.45 99.39 0.18 

#Genes 5 11.30 7.17 219 223.33 4.24 

#Time 63.53 64.40 0.87 110.71 111.07 0.23 

MLL 

#Acc (%)  98.61 97.22 0.66 97.22 97.22 0 

#Genes 113 39.20 35.04 218 228.11 4.86 

#Time 9.51 11.64 4.98 19.37 19.90 0.35 

SRBC

T 

#Acc (%)  100 100 0 100 100 0 

#Genes 20 34.80 12.30 206 221.30 7.35 

#Time 21.67 21.76 1.32 44.86 44.88 0.01 

Note: The best result of each data set is shown in shaded cells. It is selected based on the following priori-

ty criteria: 1) the highest classification accuracy; 2) the smallest number of selected genes. #Acc and 

S.D. denote the classification accuracy and the standard deviation, respectively, whereas #Genes 

and #Ave represent the number of selected genes and an average, respectively. #Time stands for running 

time in the hour unit. 

 



5 Conclusion 

Overall, based on the experimental results, the performance of CPSO was superior to 

BPSO and previous PSO-based methods in terms of classification accuracy and the 

number of selected genes. CPSO was excellent because the probability x
i

d (t +1) = 0  

has been increased by the proposed constraint of elements of particle velocity vectors 

and the introduced rule. The constraint and rule have been proposed in order to yield a 

near-optimal subset of genes for better cancer classification. CPSO also obtains lower 

running times because it selects the small number of genes compared to BPSO. For 

future works, a modified representation of particle’s positions in PSO will be pro-

posed to reduce the number of genes subsets in solution spaces. 

Table 4. A Comparison Between Our Method (CPSO) and previous PSO-Based Methods 

Data 

Method 

 

Evaluation  

CPSO PSOTS 

 

[7] 

PSOGA 

 

[4] 

IBPSO 

 

[8] 

TS-

BPSO 

[9] 

BPSO-

CGA 

[10] 

Leu-

kemia 

Average #Acc (%) (99.17) (98.61) (95.10) - - - 

Best #Acc (%) 100 - - 100 100 100 

Average  #Genes (10.50) (7) (21) - - - 

 Best #Genes  3 - - 1034 2577 300 

Colon 

Average #Acc (%) (89.36) (93.55) (88.7) - - - 

Best #Acc (%) 91.94 - - - - - 

Average  #Genes (21.30) (8) (16.8) - - - 

 Best #Genes  10   - - - 

Lung 

Average #Acc (%) (99.39) - - - - - 

Best #Acc (%) 99.45 - - - - - 

Average #Genes (11.30) - - - - - 

Best #Genes 5 - - - - - 

MLL 

Average #Acc (%) (97.22) - - - - - 

Best #Acc (%) 98.61 - - - - - 

Average  #Genes (39.20) - - - - - 

 Best #Genes  113 - - - - - 

SRBC

T 

Average #Acc (%) (100) - - - - - 

Best #Acc (%) 100 - - 100 100 100 

Average  #Genes (34.80) - - - - - 

 Best #Genes  20 - - 431 1084 880 

Note: ‘-‘ means that a result is not reported in the related previous work. A result in ‘( )’ denotes an average result.  

PSOGA = A hybrid of PSO and GA. PSOTS = A hybrid of PSO and tabu search. IBPSO = An improved binary PSO.  

TS-BPSO = A combination of tabu search and BPSO. BPSO-CGA = A hybrid of BPSO and a combat genetic algorithm.  
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