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Abstract. When analysing a metabolic pathway through 

mathematical model, it is important that the significant parameters 

are being correctly estimated.  However, this process often comes 

across problems such as easily being trapped in local minima, 

repetitive exposure to worse results during the search process, and 

occurrence of noisy data. Thus, an improved Bee Memory 

Differential Evolution algorithm (IBMDE), which is a hybrid of 

the Differential Evolution algorithm (DE), the Kalman Filter (KF), 

Artificial Bee Colony algorithm (ABC), and a memory feature is 

presented this paper. IBMDE is an improved estimation 

algorithm as previous work only utilised DE. The theronine 

biosynthesis pathway is the metabolic pathways used in this paper. 

For metabolite O-Phosphohomoserine production simulation, the 

IBMDE able to produce the estimated optimal kinetic parameter 

values with significantly reduced error rate (63.67%) and shows a 

faster convergence time (71.46%) compared to the Nelder Mead 

(NM), the Simulated Annealing (SA), the Genetic Algorithm (GA), 

and DE respectively. In addition, IBMDE demostrates to be a 

reliable estimation algorithm.  
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1. Introduction 

Systems biology manifests a biological system by a set of ordinary differential 

equations (ODEs) in mathematical models [1]. The essential interactions show 

quantitatively through ODEs with the aim in explaining the behaviour at the system 

level. Hand-tuning and in-vitro biochemical experiments are the main methods to 

retrieve the values of unknown parameters in the ODEs [2]. Under some conditions, 

these values are collected through estimation, and therefore, it is important that the 

estimation methods used in mathematical models are thoroughly studied [1]. 

Parameter estimation in system biology reduces the variance between experimental 

data and simulated data. It usually works as a part of a recursive process to develop 

mathematical models that are able to provide optimal estimated values for biological 

systems.  Nevertheless, increasing number of unknown parameters and noisy 

experimental data of dynamic biochemical pathways cause most traditional estimation 

methods to generate inaccurate estimations [3]. 

Under the category of evolutionary algorithms, the Differential Evolution 

algorithm (DE) has been found to be the best estimation algorithm. It works to 

optimize a problem repetitively with the fixed objective function. The major 

advantages of DE are efficiency, high speed, ease of use, and simplicity [4]. It had 

been implemented by Moonchai et al. [5] to improve the production of bacteriocin by 

estimating the control parameters which were temperature and pH. Therefore, in this 

paper, it is implemented as the main estimation algorithm to solve the increasing 

number of unknown parameters. Kalman gain, K, value is used by the Kalman Filter 

(KF) in handling the noisy data through normalization. IDE (the Improved 

Differential Evolution algorithm) is the hybrid of these two algorithms [6]. 

Easily trapped in the local minimal due to faster convergence speed [4] and 

attempts to expose to worse results during the search process repeatedly are the 

disadvantages of DE. Therefore, to solve the mentioned disadvantages, IDE is then 

further combine with two modifications – the artificial bee colony algorithm (ABC) 

and a memory feature to generate the improved Bee Memory Differential Evolution 

algorithm (IBMDE). ABC capable to rise the probability in finding the optimal 

solutions by the food source possibility and this characteristic avoides the trapped in 

local minima [7]. The memory feature, however, capable to keep track of the best 

candidate ever during the search process with the extra memory named gbest and this 

prevents the worse result from being exposed again.  

The paper is structured into four sections, where Section 2 introduce the method 

implemented, IBMDE, and subsequently Section 3 with experimental setup, results, 

and discussion. Finally, the conclusion and future works is showed in Section 4.  



2. Methodology 

An improved estimation algorithm, the Improved Bee Memory Differential Evolution 

algorithm (IBMDE) is presented in this paper. Previous work [5] only used DE while 

IBMDE uses a hybrid of  DE, KF, ABC, and memory feature for parameter 

estimation. The details of the IBMDE is demostrated in Figure 1. As in conventional 

DE, a n x m population matrix, P, the initial population is produced in the 

initialization process. m is the number of unknown parameters and n is the number of 

generations. Each gene of the individuals in the initial population gained its own 

value based on Equation (1). Each gene represents a parameter value and individual, 

(Indi), indicates a set of estimated parameter values (possible solution) which i is the 

index variable where 1 ≤ i ≤ n. For initialisation process, g indicates the ones matrix 

with dimension of n x 1, Iinitial = {I1, I2, …, Im} where I is the initial values for each 

parameter, and rand(n,m) indicates a n x m matrix with random values between 0 and 

1. 
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In the evaluation process, the fitness function, J, as shown: 
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is implemented to analyse the fitness of each individual. D are the ordinary differen-

tial equations (ODEs) implemented to obtained the time series data values, Eexp = {E1, 

E2, …, Em} where E is the experimental parameter values, Ssim = {S1, S2, …, Sm} 

where S is the optimal estimated parameter values, j is the index variable where 1 ≤ j 

≤ m, and f(D, z) is the function to retrieve time series data values with fixed parameter 

values, z. The best candidate (candidate with the lowest fitness value) is stored in a 

memory named gbest. Equation (3) is used to calculate the probability of each candi-

date, prob(i), where fit(i) is the fitness value with index i and max indicates the func-

tion to obtain the maximum value. The upper bound and lower bound are altered to 

individuals with the highest and lowest probability value respectively after obtaining 

the probability value of each individual as long as the fitness value is not converged.  
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Three individuals (i1,i2,i3) are chosen and then are replaced into the formula as 

presented in Equation (4). M indicates the mutated population matrix and F is the 

mutation factor. The subsequent crossover process is primarily executed according to 

the CR and U(0,1)i values. For mutation population matrix, each individual has its 

own U(0,1) value. CR indicates the crossover constant value, U(0,1)i is the uniform 

random value between 0 and 1 with index i, and C is the crossover population matrix. 

If the CR value is lower than the U(0,1) value of individual in the mutated population, 

then the mutation population’s individual would become the resultant population’s 

individual for the crossover process and vice versa. 

 The following is the updating process which is executing based on Equation (5). 

This step would update the population which is generated by the crossover process 

and it is performed according to Kalman gain value, K, retrieved from Equation (6). 

The K value from Equation (6) takes the process and measurement noise covariance 

into account and UP indicates the updated population matrix. In this study, B and R 

matrix are identity matrices while H is retrieved from Jacobian matrix and the ODEs 

information. Besides that, H matrix is invertible but it does not have to be a square 

matrix and its number of rows must be equivalent with the number of unknown 

parameters. For in silico approaches, Gaussian noise is used to simulate the noisy data 

so the model is close to the nature of biology. After a small number of trials are 

performed with the reasonable range of 0 to 1, the noisy data value implements in this 

study is 0.1. The evaluation process is performed where the results retrieved from the 

update process are analysed with the initial population’s individual after normalizing 

the noisy data. Individual with lowest fitness value is chosen between initial and 

updated population. The results generate from the evaluation process would be 

replaced by gbest values and records in solution population matrix, O, if its fitness 

value is lower than the fitness value of gbest and vice versa. Next, the whole process 

is repeated until the stopping criterion is met. The stopping criteria are set via 

predefined maximum loop values or when the fitness function has converge. The 

modified selection and ABC are highlighted with the dotted box in Figure 1. 
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where K = Kalman gain value, P = covariance of the state vector estimate, H = 

observation matrix, R = measurement noise covariance, inv = inverse function, and H’ 

= inverse of matrix H,.      

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The ABC and modify evaluation processes are highlighted in red. 

 
Fig. 1. Flowchart of IBMDE. 

 

prob(i)=0.9.*(fit(i)/max(fit(i)))+0.1; 
The lower bound and upper bound change as long the fitness 

value has not converged.  
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3. Experimental Setup 

The optimal values for kinetic parameters that consisted in the threonine biosynthesis 

pathway model for E-coli [8] are gathered then undergo IBMDE. These pathway 

consists of 11 metabolites, 11 ODEs, seven reactions involved and 46 unknown 

parameters; but only 1 ODE, two reactions and ten unknown parameters are used for 

generating metabolite O-Phospho-homoserine (HSP). HSP is a substrate for threonine 

biosynthesis while threonine uses as treament for several nervous system disorders. 

The control parameters’ values used in this study are crossover constant, CR=0.9, 

mutation factor, F=0.5, and population size, NP=10. These parameter values showed 

better results than the other values after a small number of trials are conducted 

between the reasonable range of 0 to 10. In this study, the main software used are the 

Copasi and SBToolbox in Matlab 2008a. An online database, Biomodel, is managed 

by European Bioinformatics Institute (EMBL-EBI) is used to retrieve the metabolic 

pathways. 

The Nelder Mead (NM), the Simulated Annealing (SA), the Genetic Algorithm 

(GA), DE, and IBMDE are five estimation algorithms implemented in this study to 

allow the comparisons to be performed. Table 1 shows the experimental kinetic 

parameter values collected from previous related work [8] and the simulated kinetic 

parameters are generated by all the mentioned estimation algorithms. Average of error 

rates which were produced from the time series data values for the concentration of 

the metabolite HSP are implemented to assess the accuracy of the algorithm. 

Moreover, the simulation is repeated 50 times to calculate its standard deviation 

(STD) value and the average of error rates are then tested statistically with the chi 

square test to evaluate the reliability of the algorithm. 

Table 1. Kinetic parameter values of IBMDE compared with NM, SA, GA and DE for metabo-

lite HSP. 

Kinetic parame-

ters 

Measurement kinetic 

parameter values[8] 

Simulated kinetic parameter values 

NM SA GA DE IBMDE 

vtsy_vm5 0.0434 0.038 0.089 2.849 0.038 0.181 

vtsy_k5hsp 0.31 0.461 0.282 0.820 0.144 2.183 

vhk_vm4f 0.1 0.204 0.057 16.577 1.690 62.174 

vhk_lys 0.46 0.524 2.271 0.0564 0.524 1.750 

vhk_k4lys 9.45 7.875 10.351 1.886 0.775 109.980 

vhk_k4atp 0.072 0.052 0.026 15.507 0.013 0.110 

vhk_k4ihs 4.7 5.952 1.532 3.2988 5.901 2.327 

vhk_k4hs 0.11 0.2 0.017 6.6031 4.184 51.068 

vhk_k4thr 1.09 1.2100 3.5 0.0224 1.307 4.164 

vhk_k4iatp 4.35 3.1638 0.397 4.148 7.7305 248.351 

Note: Table shows the kinetic parameter values implemened in the calculation of average of error 

metabolite HSP in Table 2. 



Both experimental and simulated kinetic parameter values are subsituted into the 

ordinary differential equations (ODEs) for the metabolite HSP, as shown below: 

 

vhkvtsy
dt

dHSP
                                                                                                     

(7) 

 

where  

vtsy = compartment * vtsy_vm5 * hsp / ( hsp + vtsy_k5hsp ),  

vhk = compartment * ( vhk_vm4f * hs * atp / (( 1 + vhk_lys / vhk_k4lys ) * (atp + 

vhk_k4atp * (1 + hs / vhk_k4ihs )) * ( hs + vhk_k4hs * ( 1 + thr / vhk_k4thr ) 

* (1 + atp / vhk_k4iatp )))),  

compartment = constant value of 1,  

adp = concentration for metabolite adenosine diphosphate which is equal to 0,  

atp = concentration of metabolite adenosine triphosphate which is equal to 10,  

hsp = concentration of metabolite HSP which is equal to 0, 

hs = concentration of metabolite homoserine which is equal to 0,  

thr = concentration of metabolite threonine which is equal to 2. 

 

Equation (7) is used to retrieve the time series data values for the concentration of 

metabolite HSP. Experimental results, y, and simulated results ysim, for NM, SA, GA, 

DE, and IBMDE are consisted in the time series data values respectively. Equation 

(8), Equation (9), and Equation (10) are used to calculate the error rate (e), average of 

error rate (A), and standard deviation (STD) value respectively. 
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where w= the index variable, mu= the mean value, and Q= the number of rows of time 

series data values.  
 

 

 
 

 

 

 



4.  Experimental Results and Discussion 

The average of error rate for each estimation algorithm is shown in Table 2. The 

results show that IBMDE has the lowest average of error rate with 0.001764 

metabolite HSP. This proved that with the capability to keep tract of the best 

candidate ever during the search process by the memory named gbest, the accuracy of 

the estimation result has enhanced. This is due to the fact that with the memory, gbest, 

the search process has been prevented from being explored to worse results.  

 

Table 2. Average of error rates for metabolite HSP. 

Metabolite NM SA GA DE  IBMDE  

HSP 0.002830 0.002699 0.0052727 0.001886 0.001764 

Note: Shaded column represents the best results. 

 

Table 3 shows the number of generations needed for each estimation algorithm to 

converge to its optimal fitness value for metabolite HSP whereas the execution time 

of each estimation algorithm on a Core i5 PC with 4GB main memory for metabolite 

HSP is shown in Table 4. Based on the results, SA requires the longest time, 698.2019 

seconds with 5009 number of generations to converge to the optimal value for all 

kinetic parameters. On the contrary, the IBMDE requires the shortest time, 343.4834 

seconds with 4 number of generations.  This implied that less execution time and less 

number of generation required to converge able to enhance the effiency of the 

estimation algorithm in identifying the optimal solution as it can be retrieved in a 

shorter time. In short, the addition of a memory feature has avoided exposing space 

with worse results, and the addition of ABC has reduced the search space. Therefore, 

IBMDE showed higher accuracy and shorter computational time. 

 

Table 3. Number of generations for metabolite HSP. 

Metabolite NM SA GA DE  IBMDE  

HSP 33 5009 91 86 4 

Note: Shaded column represents the best results. 

 

Table 4. Execution times in unit of second (s) for metabolite HSP. 

Metabolite NM SA GA DE  IBMDE  

HSP 531.1887 698.2019 400.5667 398.3966 343.4834 

Note: Shaded column represents the best results. 

 

Figure 2 shows the metabolite production graph for the metabolite HSP based on 

the kinetic parameters collected from previous related work [8] and produced by the 

mentioned estimation algorithms. The results illustrate that the kinetic parameters 

generated by IBMDE have enhanced the production rate as the experimental line is 



lower than its dotted simulation line. This enhancement is supported by the increase 

in speed and concentration kinetic parameters for metabolite HSP as compared to 

previous related work [8]. The speed kinetic parameters named vm5 and vm4f, rise by 

0.138 min)*/(lmol  and 62.0741 min)*/(lmol  respectively while for the 

concentration kinetic parameters - vtsy_k5hsp, vhk_k4atp, vhk_k4hs, vhk_k4thr, and 

vhk_k4iatp, the values rise by 1.8733 lmmol / , 0.383 lmmol/ , 50.9584 lmmol / , 

3.0741 lmmol / , and 244.0015 lmmol /  respectively. 
mol

 is micromole, mmolis 

milimole, l is liter, s is seconds, and  min is minutes. In Figure 2, ORI indicates the 

production graph that is generated with the kinetic parameters obtained from previous 

related work [8] whereas IBMDE, DE, GA, NM, and SA indicate the production 

graphs that are generated by IBMDE, DE, GA, NM, and SA. Speed is assumed to be 

the crucial kinetic parameter which can be increased to enhance the the interested 

metabolites’ production [10]. The reasons that cause the increase in the speed 

parameter are increase in the surface area, substrate concentration, temperature, and 

the addition of catalyst. The enzyme and temperature fail to be the reasons to increase 

the speed parameter under particular conditions. When none of the reaction presents 

the flux coefficient value is equal to one and the temperature implemented exceeds 

the optimal temperature of the enzyme, then the addition of temperature and enzyme 

cause no effect.  Other than that, the production of the interested metabolite can be 

improved by rising the concentration of the reactants. This implies that the product 

increase as more sources. 

 

 
Fig. 2. Production Simulation Graph for NM, SA, GA, DE and IBMDE of metabolite O-

Phospho-homoserine (HSP). 
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Table 5 shows the benckmark functions tested with Particle Swarm Optimisation 

(PSO), DE, and IBMDE. For these benchmark function tests, control parameters used 

for PSO are swarm size= 40, inertia weight= 0.7290, particle's best weight= 1.4945, 

and swarm's best weight= 1.4945 while for DE and IBMDE are NP=20, CR= 0.9, and 

F=0.5. Based on the results, IBMDE passes four tests out of five tests. Once again, it 

showed its ability in obtaining the optimal solution but it failed in the Rosenbrock 

test. This is due to the fact that Rosenbrock’s landscape modifies from simple to 

complex and this implies that the diversity of control parameters is getting lesser. The 

mentioned problem can be solved by requiring large number of generations. 

 

Table 5. Performance evaluations among PSO, DE, and IBMDE on benchmark functions. 

Optimisation  

algorithm Ackley Griewank Rastrigin Rosenbrock Sphere 

IBMDE 9.47E-07 1.50E-05 4.44E-14 1.18E-08 8.98E-18 

PSO 1.96E-06 9.15E-04 2.38E-10 2.97E-12 3.48E-14 

DE 2.08E-06 5.14E-04 1.21E-12 4.33E-09 1.83E-17 

Note: Shaded column represents the best results. 

 

A fitness function is used to reduce the variance between experimental and 

simulated results in this study. Based the results obtained from this experiment, the 

STD value and mean for the metabolite HSP are 0.001753 and 0.00136 respectively. 

Standard deviation is a calculation of how widely are the values being distributed 

from the mean (the average value). The results generated by IBMDE were consistent 

and the difference between each 50 run was small as the STD value for IBMDE was 

close to the mean value. Chi-square test (X
2
 test), a statistical test has to be performed 

as stated by Lillacci and Khammash, 2010 [2], in order to assure that the simulated 

results are statistically consistent with the experimental results. The confidence 

coefficient, γ, and degree of freedom, s, used in this paper are 0.995 and 1. Interval 

estimates, σ
2
, produced based on s, γ, and the formula found in Lillacci and 

Khammash, 2010 [2] are 0.00004 < σ
2
< 9.550.  The hypothesis proposed is the 

simulated results are statistically consistent with the experimental results. The X
2 

value for the metabolite HSP is 0.00004 based on the chi-square equation; which 

implies that the X
2
 value is existed in within the range of σ

2
. Thus, the hypothesis is 

accepted as the IBMDE passed the X
2 

test. The estimated results demonstrated to be 

statistically consistent with the experimental results. 

 



5. Conclusion 

IBMDE, a hybrid of  DE, KF, ABC, and memory feature effectively reduced the 

search space through the probability value obtained from ABC in the search process 

and ultimately resulted in faster convergence time while only DE was used in 

previous work [5]. The exposing of worse search spaces has avoided with the ability 

to store of the best candidate ever with the gbest value during the search process and 

consequently helped in enhancing the accuracy of the estimated results. In short, 

IBMDE performed better than SA, NM, GA, and DE in terms of computational time 

and accuracy. Furthermore, IBMDE also has proved that it is a reliable estimation 

algorithm as it passed the chi square test and can be used in used the areas that 

contains noisy data for example in the electrical and electronic engineering field. 

Besides that, IBMDE can be implemented to other metabolic pathways to improve the 

interested metabolites which are essential for medical and industrial use.  

DE is very sensitive towards its control parameters: mutation factor (F), crossover 

constant (CR), and population size (NP) [9]. Thus, as future work, the self-adapting 

approach to these control parameters can be added to improve the performance of the 

conventional DE as well as the IBMDE. 
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