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Abstract. Due to the needs to discover the immense information and 

understand the underlying mechanism of gene regulations, modelling gene 

regulatory networks (GRNs) from gene expression data has attracted the 

interests of numerous researchers. To this end, the dynamic Bayesian network 

(DBN) has emerged as a popular method in GRNs modelling as it is able to 

model time-series gene expression data and feedback loops. Nevertheless, the 

commonly found missing values in gene expression data, the inability to take 

account of the transcriptional time lag, and the redundant computation time 

caused by the large search space, frequently inhibits the effectiveness of DBN 

in modelling GRNs from gene expression data. This paper proposes a DBN-

based model (IST-DBN) with missing values imputation, potential regulators 

selection, and time lag estimation to tackle the aforementioned problems. To 

evaluate the performance of IST-DBN, we applied the model on the S. 

cerevisiae cell cycle time-series expression data. The experimental results 

revealed IST-DBN has decreased computation time and better accuracy in 

identifying gene-gene relationships when compared with existing DBN-based 

model and conventional DBN. Furthermore, we expect the resultant networks 

from IST-DBN to be applied as a general framework for potential gene 

intervention research.  

Keywords: Dynamic Bayesian network, missing values imputation, time-series 

gene expression data, gene regulatory networks, network inference. 

1 Introduction 

In recent years, the advent of DNA microarray technology has permitted researchers 

to develop novel experimental approaches for probing into the complicated system of 

gene regulation. The ensuing output, known as gene expression data, brings forth 

valuable information such as the robustness, behaviours or anomalies demonstrated 

by the cellular system under different circumstances [1].  
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Over the years, different computational approaches have been established to 

automate GRNs modelling. Particularly, Bayesian network (BN), which relies on 

probabilistic measure to recognize causal interactions between a set of variables, was 

widely used to model GRNs. BN has several advantages: ability to work on local 

components, prevent data overfitting by assimilation of other mathematical models, 

and capable of merging prior knowledge to reinforce the causal links. However, BN 

also has two limitations: it cannot model feedback loops and handle time-series gene 

expression data. 

In biological perspective, feedback loops signify the homeostasis process in living 

organisms. Therefore, the dynamic Bayesian network (DBN) has been introduced as 

an alternative to counter BN’s drawbacks. However, missing values distributed across 

gene expression data might influence up to 90% of the genes and consequently 

affecting downstream analysis and modelling methods [2]. Also, in predicting gene-

gene relationships, conventional DBN normally includes all genes into the subsets of 

potential regulators and their target genes, and in turn triggers the large search space 

and the redundant computational cost which obstructs the usefulness of DBN 

modelling [3]. In light of these problems, Chai et al. [4] proposed a DBN-based 

model (ISDBN) with missing values imputation and potential regulators selection.  

The disadvantage of ISDBN and conventional DBN is that they do not have the 

capability to tackle transcriptional time lag effectively, whereby the target genes are 

provided a time delay by their regulators before their expressions in the system. This 

drawback hinders the accuracy of DBN-based methods in modelling GRNs. To 

address this problem, we proposed to further enhance the aforementioned model with 

time lag estimation (IST-DBN) which uses the time difference between the initial 

changes of expression level of potential regulators against their target genes as an 

appropriate transcriptional time lag. 

2 Methods 

In essence, IST-DBN consists of four steps: missing values imputation, potential 

regulators selection, time lag estimation and DBN modelling. Fig. 1 illustrates the 

schematic overview of IST-DBN.  

 

 
 

Fig. 1. Schematic overview of IST-DBN. 
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2.1 Missing Values Imputation 

Missing values in gene expression data happen for various factors. Tiny impurities 

would corrupt the microarray slides at a number of spots as they are very small and 

crammed. After scanning and digitalising the array, the problematic spots are labelled 

as missing. Numerous imputation algorithms have been developed to handle missing 

values by exploiting the underlying expression data structure and pattern. Particularly, 

LLSimpute extracts information from local similarity structures by creating a linear 

combination of similar genes and target genes with missing values via a similarity 

measure [5]. This algorithm consists of two steps. Firstly, k genes are selected by the 

L2-norm, where k is a positive integer that defines the number of coherent genes to the 

target gene. For instance, to impute a missing value   located at x11 in a m×n matrix 

X, the k-nearest neighbour gene vectors for x1,  

                                                   
                                                              (1) 

are first computed, whereby the gene expression data is described as a m×n matrix X 

(m is the number of genes, n is the number of observations), and x1 represents the row 

of the first gene with n observations. si is a list of k-nearest neighbour genes  vectors, 

which in turn corresponds to the i-th row of the transpose vector v
T
. The second step 

involves regression and estimation of the missing values. A matrix,            

whereby the k rows of the matrix contains vector v, and two vectors,        and 

          , are subsequently formed. The vector b contains the first element of k 

vectors v
T
, while vector w contains n – 1 elements of vector x1. A k-dimensional 

coefficient vector y is then computed such that the least square problem is minimised 

as 

                                                         | 
    |                                                     (2) 

Let y
*
 to denote the vector whereby the square is minimised such that 

                                              
      

        
                                  (3) 

where        , and therefore, the missing value   can be imputed as a linear 

combination of coherent genes such that 

                                                                                                               (4) 

where ( A
T
 )   exists as the pseudoinverse of A

T
 [5].  

2.2 Potential Regulators Selection 

In most cases, the expression level of transcriptional factors (TFs) would fluctuate 

prior to or simultaneously with their target genes [6]. Based on this characteristic, we 

conceived an algorithm which would decrease the search space by restricting the 

number of potential regulators for each target genes. The first step is to determine a 



threshold, either experimentally or fixed as the average expression level of the genes. 

In this paper, the threshold for up-regulation and down-regulation are determined 

based on the baseline cut-off of the gene expression values. As such, for the S. 

cerevisiae dataset used in this paper, the threshold is decided as ≥1.2 for up-regulation 

and ≤0.7 for down-regulation. The gene expression values are then classified into 

three states: up-, down- and normal regulation. The three states denote whether the 

expression value is greater than, lower than or similar to the threshold. After that, the 

exact time units of initial up-regulation and down-regulation of each gene are 

determined, and genes with prior changes in expression level are included into the 

subset of potential regulators against genes with later expression changes.  As genes 

with late expression changes might comprise a large number of potential regulators, 

we have limited the maximum time gap for prior expression changes to five time units 

to prevent choosing potential regulators for a target gene from the whole gene 

expression dataset. To further illustrate this idea, let us first assume two hypothetical 

genes: gene 1 and gene 2. Gene 1 experienced an initial expression change at time t1 

before gene 2’s initial expression change at time t2, and so gene 1 is included into the 

subset of potential regulators for gene 2 (See Fig. 2). The same process applies to 

other up- or down-regulated genes which fulfil the criteria. 

 

 
 

Fig. 2. Schematic overview of potential regulators selection. 

2.3 Time Lag Estimation 

Transcriptional time lag is defined as the time delay between the expression of 

regulators and the expression of their target genes to protein products. Using the two 

hypothetical genes, 1 and 2, and that gene 1 regulates gene 2. Gene 1 initiates 

expression fluctuation at time tx and gene 2 has an expression change at ty. The time 

difference between tx and ty is considered as the transcriptional time lag. In DBN 

modelling of GRNs, potential regulators are paired up with target genes based on the 

statistical analysis of their causal strength between time units. However, even though 
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the actual transcriptional time lag might be several time units, DBN typically aligns 

regulator-gene pairs by only one time unit. IST-DBN takes into account of the actual 

transcriptional time lag by pairing up target genes and their potential regulators based 

on the time difference between their pre-determined initial changes in expression 

level. For a target gene, potential regulators are divided into separate groups based on 

the time delay (e.g. one or two time units), mainly due to the fact that a target gene 

may have several regulators acting upon it in different time unit. 

2.4 Dynamic Bayesian Network 

DBN models time-series data by observing the values of a set of variables at different 

time units. DBN modelling usually consists of two steps: parameter learning and 

structure learning. In parameter learning, the joint probability distribution (JPD) of the 

variables is computed based on Bayes theorem. Assuming a microarray dataset with 

m genes and n observations, known as a m × n matrix X = (x1, …, xm) whereby each 

row, vector xm = (xm1,…, xmn) represents a gene expression vector observed at time t. 

The relationship is described as a first-order Markov chain whereby only forward 

edges are allowed. The JPD of the model has the general form of:   

 

                                               |        |                               (5)  

 

Based on the previously defined threshold, we discretised the expression values of 

the results acquired from the previous steps into three classes: -1, 0 and 1, which 

correspond to down-, normal and up-regulation respectively. The groups of potential 

regulators are then further divided in subsets. For example, in a group of potential 

regulators consisting gene R, and gene S, the subsets would be {R}, {S} and {R, S}. 

Each of the subset and the target gene, are subsequently organised into a data matrix 

with their discretised expression values. The conditional probabilities of each subset 

of potential regulators against their target genes are then computed. The next step is to 

search for the optimal network structure via a scoring function based on the Bayesian 

Dirichlet equivalence (BDe). The final results are imported into GraphViz 

(http://www.graphviz.org) for network visualisation and analysis. 

3 Result and Discussion 

3.1 Experimental Data and Setup 

The S. cerevisiae cell cycle time-series gene expression data [7] encloses 6178 genes 

which were observed at four medium time series (alpha, CDC15, CDC28 and elu; 18, 

24, 17 and 14 time points) and two short time series (CLN3, CLB2; both 2 time 

points). It also consists of 5.912% missing values (28,127 out of 475,706 

observations). 

The DBN modelling portion of IST-DBN is implemented under the framework of 

BNFinder [8], whereas the missing values imputation, potential regulators selection 

and the time lag estimation are implemented in MATLAB environment. For 



performance evaluation, we compared the accuracy and computation time of the 

proposed IST-DBN against ISDBN and DBN (typified by BNFinder). The accuracy is 

measured by comparing the results from the three models to the established S. 

cerevisiae cell cycle pathway at KEGG (http://www.kegg.jp). The computation time 

of the models are compared on a 3.2GHz Intel Core i3 computer with 2GB main 

memory. The results are summarised in Table 1, in which the first row represents the 

network modelled by IST-DBN, the second row represents the network modelled by 

ISDBN, and the third row represents the network modelled by DBN. An edge 

indicates a relationship between the two connected genes. ‘Correctly predicted 

relationships’ denotes the number of relationships found in the established networks 

and also in the modelled results, ‘sensitivity’ is the percentage of correctly predicted 

relationships out of all predicted relationships, and ‘specificity’ correspond to the 

percentage of correct prediction that no relationship exists between two genes. 

3.2 Experiment Results 

Out of the established 35 gene-gene relationships, IST-DBN managed to identify 32 

relationships (Fig. 3.) while ISDBN identified 30 – it failed to detect CLN1-CDC28 

and FUS3-CDC28. CLN1 and FUS3 were assigned as the potential regulators of 

CDC28, however both of them have a transcription time lag exceeding 2 time units, 

and this caused ISDBN to erroneously dismiss them in the final group of potential 

regulators for CDC28. IST-DBN took into account of the transcriptional time lag and 

realigned them accordingly, which in turn increased the strength of their causal 

relationships with CDC28. Furthermore, by pairing up regulators and genes with a 

biologically relevant transcriptional time lag, IST-DBN was able to limit down the 

false positives to two while ISDBN erroneously detected six false positives. Both 

models were able to identify the feedback loop of the cell cycle pathway, for example, 

the sub-network of CDC28-SWI4/6-YOX1-MCM1-CLN3-CDC28 which signifies 

the transcription regulation during G1 phase of the cell cycle. On the other hand, 

DBN only identified 27 relationships. It missed out YHP1-MCM1, SWI4-CLN1 and 

CDC28-WHI5. This is more or less attributed to the fact that many missing values 

were found in the original expression profiles of the six genes, and the lack of an 

efficient imputation method caused DBN to lose its accuracy. IST-DBN reported 

91.43% sensitivity and 98.08% specificity compared to ISDBN’s 85.71% sensitivity 

and 94.06% specificity. DBN performed the worst among the three models, 

registering 77.14% sensitivity and 93.22% specificity. 

While an edge denotes the existence of a relationship between two genes, there are 

four possible situations: correct direction and regulation type, correct direction but 

incorrect regulation type, misdirected but correct regulation type, and misdirected and 

wrong regulation type. One misdirected relationship and two regulation types in 

ISDBN were correctly reversed in IST-DBN. Also, the search space for both models 

is relatively small as the number of potential regulators is limited to those which 

experienced prior expression changes against targeted genes. Hence both models 

registered similar computation time in which IST-DBN has a slightly faster 

computation time of 24 minutes and 33 seconds compared to ISDBN’s 25 minutes 

and 9 seconds. In contrast, DBN reported a computation time of 1 hour 8 minutes and 

http://www.kegg.jp/


23 seconds, mostly due to the large search space where it includes all genes as 

potential regulators against target genes. 

 

 
 

Fig. 3. Predicted cell cycle sub-network for S. cerevisiae dataset using IST-DBN. Dash edges (-

--) denote down-regulations and straight-lined edges (—) denote up-regulations. A cross 

represents an incorrect prediction; a circle represents an incorrect regulation type; an edge 

without any attachment is a correct prediction. 

 

 
Table 1. The results of experiment study. 

 

Model Correctly 

predicted 

relationships 

Sensitivity Specificity Computation time 

(HH:MM:SS) 

IST-DBN 32 91.43% 98.02% 00:24:33 

ISDBN 30 85.71% 94.06% 00:25:09 

DBN 27 77.14% 93.22% 01:08:23 
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4 Conclusion 

Conventional DBN has been hampered by three problems: the missing values in gene 

expression data, the relatively large search space caused by comprising all genes into 

the subset of potential regulators against target genes, and the lack of a way to handle 

transcriptional time lag. ISDBN was proposed by Chai et al. [4] to address the first 

two problems: Missing values are imputed based on linear combination of similar 

genes, and the search space is reduced by limiting the subset of potential regulators 

based on particular criteria. However, this model does not take into account of the 

transcription time lag. Therefore, in this paper, we proposed an enhanced ISDBN with 

time lag estimation (known as IST-DBN) to tackle the third problem. Instead of 

aligning by the default one time unit, IST-DBN uses the time difference between 

expression changes to pair up regulators and target genes. In this way, IST-DBN is 

able to capture most of the statistical correlation between genes that have a longer 

transcriptional time lag. Based on the S. cerevisiae cell cycle pathway dataset, IST-

DBN showed promising results in terms of accuracy and computation time when 

compared to ISDBN and conventional DBN. It would be of our upmost interest to 

apply IST-DBN to other datasets, for instance, E. coli and D. melanogaster, as the 

resultant GRNs might be very useful for future gene intervention experiments or 

hypotheses testing purposes. 

Acknowledgments 

This work is financed by the Institutional Scholarship MyPhD provided by the 

Ministry of Higher Education of Malaysia. We would also like to thank Universiti 

Teknologi Malaysia for supporting this research by the UTM GUP research grants 

(Vot numbers: QJ130000.7107.01H29 and QJ130000.7123.00H67). 

References 

1. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. 

Nat. Rev. Mol. Cell Bio. 9(10), 770-780 (2008) 

2. Ouyang, M., Welsh, W.J., Geogopoulos P.: Gaussian mixture clustering and 

imputation of microarray data. Bioinformatics 20(6), 917-923 (2004) 

3. Jia, Y., Huan, J.: Constructing non-stationary dynamic Bayesian networks with a 

flexible lag choosing mechanism. BMC Bioinformatics 2010(11), S27 (2010) 

4. Chai, L.E., Mohamad, M.S., Deris, S., Chong, C.K., Choon, Y.W., Ibrahim, Z., 

Omatu, S.: Inferring gene regulatory networks from gene expression data by a 

dynamic Bayesian network-based model. In: Omatu, S., De Paz, J.F., Rodriguez, 

S., Molina, J.M, Bernardos, A.M., Corchado, J.M. (eds.) DCAI 2012. AISC, vol. 

151, pp. 379-386. Springer, Heidelberg (2012) 

5. Kim, H., Golub, G., Park, H.: Missing value estimation for DNA microarray gene 

expression data: local least squares imputation. Bioinformatics 21(2), 187-198 

(2005) 



6. Yu, H., Luscombe, N.M., Qian, J., Gerstein, M.: Genomic analysis of gene 

expression relationships in transcriptional regulatory networks. Trends Genet. 19, 

422-427 (2003) 

7. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., 

Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle 

regulated genes of the yeast Saccharomyces cerevisiae by microarray 

hybridization. Mol. Biol. Cell 9, 3273-3297 (1998) 

8. Wilczynski B., Dojer N.: BNFinder: exact and efficient method for learning 

Bayesian networks. Bioinformatics 25(2), 286-287 (2009) 


