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Abstract. Microbial strains can be manipulated to improve product yield and 
improve growth characteristics. Optimization algorithms are developed to iden-
tify the effects of gene knockout on the results. However, this process is often 
faced the problem of being trapped in local minima and slow convergence due 
to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux 
Balance Analysis (BHFBA) which is a hybrid of Bees Algorithm, Hill Climb-
ing Algorithm and Flux Balance Analysis to solve the problems and improve 
the performance in predicting optimal sets of gene deletion for maximizing the 
growth rate and production yield of desired metabolite. Escherichia coli is the 
model organism in this paper. The list of knockout genes, growth rate and pro-
duction yield after the deletion are the results from the experiments. BHFBA 
performed better in term of computational time, stability and production yield. 
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1 Introduction 

Microbial strains optimization has become popular in genome-scale metabolic net-
works reconstructions recently as microbial strains can be manipulated to improve 
product yield on desired metabolites and also improve growth characteristics [1].  
Reconstructions of the metabolic networks are found to be very useful in health,  
environmental and energy issues [2]. The development of computational models for 
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simulating the actual processes inside the cell is growing rapidly due to vast numbers 
of high-throughput experimental data.  

Many algorithms were developed in order to identify the gene knockout strategies 
for obtaining improved phenotypes. The first rational modeling framework (named 
OptKnock) for introducing gene knockout leading to the overproduction of a desired 
metabolite was developed by Burgard et al., 2003 [3]. OptKnock identifies a set of 
gene (reaction) deletions to maximize the flux of a desired metabolite with the inter-
nal flux distribution is still operating such that growth is optimized. 

OptKnock is implemented by using mixed integer linear programming (MILP) to 
formulate a bi-level linear optimization that is very promising to find the global op-
timal solution. OptGene is an extended approach of OptKnock which formulates the 
in silico design problem by using Genetic Algorithm (GA) [4]. Meta-heuristic me-
thods are capable in producing near-optimal solutions with reasonable computation 
time, furthermore the objective function that can be optimized is flexible. SA is  
then implemented to allow the automatic finding of the best number of gene  
deletions for achieving a given productivity goal [5]. However, the results are not yet 
satisfactory. 

A hybrid of BA and FBA was proposed by Choon et al., 2012 [6], it showed a bet-
ter performance in predicting optimal gene knockout strategies in term of growth rate 
and production yield. Pham et al., 2006 [7] introduced Bees Algorithm (BA), is a 
typical meta-heuristic optimization approach which has been applied to various prob-
lems, such as controller formation [8], image analysis [9], and job multi-objective 
optimization [10]. BA is based on the intelligent behaviours of honeybees. It locates 
the most promising solutions, and selectively explores their neighbourhoods looking 
for the global maximum of the objective function. BA is efficient in solving optimiza-
tion problems according to the previous studies [7, 10].  However, due to the depen-
dency of BA on random search, it is relatively weak in local search activities [11]. 
Hence, BHFBA is proposed to improve the performance of BAFBA as Hill climbing 
algorithm is a promising algorithm in finding local optimum. This paper shows that 
BHFBA is not only capable in solving larger size problems in shorter computational 
time but also improves the performance in predicting optimal gene knockout strategy 
than previous works. In this work, we present the results obtained by BHFBA in two 
case studies where Escherichia Coli (E.coli) iJR904 model is the target microorgan-
isms [12]. In addition, we also conduct a benchmarking to test performance of the 
hybrid of Bee algorithm and Hill climbing algorithm. 

2 Bees-Hill Flux Balance Analysis (BHFBA) 

In this paper, we proposed BHFBA in which BAFBA is only applied to identify op-
timal gene knockout strategies recently. Fig. 1 shows the flow of BAFBA while Fig. 2 
shows our proposed BHFBA. The important steps are explained in the following  
subsections. 
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Fig. 1. BAFBA Flowchart 

2.1 Model Pre-processing 

The model is pre-processed through several steps based on biology assumptions as 
well as computational approaches to reduce the search space as while as increase the 
accuracy. Lethal reactions such as the genes that are found to be lethal in vivo, but not 
in silico, should be removed to improve the quality of the results. The results are 
invalid if a lethal reaction is deleted. The following are the details of computational 
pre-processing steps to the model [5]. 

a. Fluxes that are not associated with any genes, such as the fluxes related to external 
metabolites and exchange fluxes that represent transport reaction should not be in-
volved in the process. These fluxes do not have a biological meaning thus they 
should not be knocked out. 

b. Essential genes that cannot be deleted from the microorganism's genome need to be 
removed. The search space for optimization is reduced due to that these genes 
should not be considered as targets for deletion. A linear programming problem is 
defined by setting the corresponding flux to 0, while maximizing the biomass flux 
for each gene in the microorganism's genome. If the biomass flux result from the 
Linear Programming algorithm is zero (or near zero) then the gene is marked as es-
sential. This biological meaning of this fact is that the microorganism is unable to 
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survive without this gene. This process does not suggest any changes to the model 
like the previous one, but provides favorable information for the optimization algo-
rithms. With the help of biologists, the list of essential genes can be manually 
edited to include genes that are known to be essential in vivo, but not in silico. 

c. Given the constraints of the linear programming problem, the fluxes need to be 
removed if the fluxes cannot exhibit values different from 0. Two linear program-
ming are solved for every reaction in the model: the first is to define the flux over 
that reaction as the maximization target, while the second is to set the same varia-
ble as minimization target. If the objective function is 0 for both problems, then the 
variable is removed from the model. 

 
Note: Red-dotted box is Hill Climbing algorithm. 

Fig. 2. BHFBA Flowchart  

2.2 Bee Representation of Metabolic Genotype 

One or more genes can be discovered in each reaction in a metabolic model. In this 
paper, each of those genes is represented by a binary variable indicating its absence or 
presence (0 or 1), these variables form a ‘bee’ representing a specific mutant that 
lacks some metabolic reactions when compared with the wild type (Fig. 3.) 
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Note: Reac represents reaction. 

Fig. 3. Bee representation of metabolic genotype 

2.3 Initialization of the Population 

The algorithm starts with an initial population of n scout bees.  Each bee is initialized 
as follows: assume that a reaction with n genes. Bees in the population are initialized 
by setting present or absent status to each gene randomly. Initialization of the popula-
tion is done randomly so that all bees in the population have an equal chance of  
being selected. The result might not truly reflect the population if it is done with bias 
setting. 

2.4 Scoring Fitness of Individuals 

Each site is given a fitness score that determines whether to recruit more bees or 
should be abandoned.  In this work, we used FBA to calculate the fitness score for 
each site and the equation is as follow:  
 

Maximize Z, where  

Z = ∑ civi = c.v  (1)

where c = a vector that defines the weights for of each flux. 
Cellular growth is defined as the objective function Z, vector c is used to select a 

linear combination of metabolic fluxes to include in the objective function, v is the 
flux map and i is the index variable (1, 2, 3, …, n). After optimizing the cellular 
growth, mutant with growth rate more than 0.1 continues the process by minimizing 
and maximizing the desired product flux at fixed optimal cellular growth value. 
Hence, we can enhance yield of our desired products at fixed optimal cellular growth. 
Production yield is the maximum amount of product that can be generated per unit of 
substrate. The following shows the calculation for production yield: 

      Production yield= (production rateproduction)/(consumption ratesubstrate)   
      (mmol/mmol)(gm/gm)                                                       (2) 

where mmol = millimole and gm is gram. 
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We used Biomass-product coupled yield (BPCY) as the fitness score in this work, the 
calculation for BPCY is as follow:  

 BPCY = product yield * growth rate (mmol(mmol*hr)-1)(gm (gm * hr)-1) (3) 

where mmol is millimole, hr is hour and gm is gram. 

2.5 Neighbourhood Search (Hill Climbing Algorithm) 

The algorithm carries out neighbourhood searches in the favored sites (m) by using 
Hill climbing algorithm. Hill climbing is an iterative algorithm that starts with an 
arbitrary solution to a problem, then attempts to find a better solution by incremental-
ly changing a single element of the solution. In this paper, the initial solution is the m 
favored sites from the population initialized by BA. The algorithm starts with the 
solution and makes small improvements to it by adding or reducing a bee to the sites. 
User defined the value of initial size of patches (ngh) and uses the value to update site 
(m) which is declared in the previous step to search in neighbourhood area. In this 
paper, m is equal to 15 and ngh is equal to 30, the values are obtained by conducting a 
small number of trials with the range of 10 to 25 and 20 to 35 respectively. This step 
is important as there might be better solutions than the original solution in the neigh-
bourhood area.  

2.6 Randomly Assigned and Termination  

The remaining bees in the population are sent randomly around the search space to 
scout for new feasible solutions. This step is done randomly to avoid overlooking the 
potential results that are not in the range. These steps are repeated until either the 
maximum loop value is met or the fitness function has converged. At the end, the 
colony generates two parts to its new population – representatives from each selected 
patch and other scout bees assigned to perform random searches. 

3 Results and Discussion 

In this paper, E. coli iJR904 is used to test on the operation of BAFBA [12]. The 
model contains 904 genes, 931 unique biochemical reactions, and 761 metabolites. 
The model is pre-processed through several steps based on biology assumptions and 
computational approaches before BHFBA is applied. This resulted in the size of the 
model is reduced to 667 reactions. Lethal reactions such as the genes that are found to 
be lethal in vivo, but not in silico, are not included as the possible targets in BHFBA. 
The reason to remove lethal reaction is that the microorganism is unable to survive 
without this reaction. The E.coli simulations are performed for aerobic minimal media 
conditions. The glucose uptake rate are fixed to 10 mmol/gDW/hr while a set  
non-growth associated maintenance of 7.6 mmol ATP/gDW/hr. The experiments  
are carried out by using a 2.3 GHz Intel Core i7 processor and 8 GB DDR3 RAM 
computer.  
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Table 1 and Table 2 summarize the results obtained from BHFBA for succinic acid 
and lactic acid production from E.coli. As shown from the results, this method has 
produced better results to the previous works in term of growth rate and BPCY 
meanwhile potential genes which can be removed are identified [3][4][5]. 

Table 1. Comparison between different methods for production of Succinic acid in E.coli 

Method Growth Rate (1/hr) BPCY List of knockout genes 
BHFBA 0.7988 0.93656 PTAr**, RPE, SUCD1i 
BAFBA [10] 0.62404 0.66306 FUM, PTAr**, TPI** 
SA + FBA [5] N/A  0.39850 ACLD19*, DRPA, GLYCDx, 

F6PA, TPI**, LDH_D2, EDA, 
TKT2, LDH_D- 

OptKnock [3] 0.28  N/A ACKr, PTAr**, ACALD* 

Note: The shaded column represents the best result. N/A – Not Applicable. * Common genes for all me-
thods. ** Common genes in either 2 methods. BPCY is in gram (gram-glucose.hour)-1. 

 
Table 1 shows that BHFBA performed better than the previous works with growth 

rate 0.7988 and BPCY 0.93656. Knocking out succinate dehydrogenase (SUCD1i) 
interrupts the formation from succinic acid to fumarate. Without the conversion from 
succinic acid to fumarate, production yield of succinic is improved. Next, phospho-
transacetylase (PTAr) is removed, according to Burgard et al., 2003[3], the mutants 
can grow anaerobically on glucose by producing lactate. In the next step, ribulose-5-
phosphate-3-epimerase (RPE) is suggested to knockout. This knockout involves the 
inflow reaction of ammonium. As stated in Bohl et al., 2010 [13], the utilization of 
nitrate as electron acceptor and ammonium source under anaerobic conditions can 
improve succinate production. 

Table 2 shows the results of BHFBA and previous works. BHFBA obtained a better 
BPCY that is 5.2241 than the previous work. However, the growth rate is slightly 
lower than BAFBA due to BHFBA finds a solution with higher BPCY with the 
condition that the growth rate is more than 0.1. The deletion of fructose bisphosphatase 
and phosphoglycerate kinase decreased the efficiency of gluconeogenesis which 
resulted in the increment concentration of phosphoenolpyruvate. Phosphoenolpyruvate 
is then converted into pyruvate and continues to convert into lactic acid. Knocking out 
acetaldehyde dehydrogenase which catalyze the conversion of acetaldehyde into acetic 
acid eliminated the competiting product, acetic acid. In consequence the yield of lactic 
acid is improved. 

Table 3 shows the computational time comparison between BHFBA and BAFBA 
for 1000 iterations. The average computational time of BHFBA improved 69% of the 
BAFBA result for 1000 iterations. 
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Table 2. Comparison between different methods for production of Lactic acid in E.coli 

Method Growth Rate (1/hr) BPCY List of knockout genes 
BHFBA 0.62501 5.2241 FBP, PGK, ACALD* 
BAFBA [10] 0.86381 2.1677 ACALD*, ACKr**, GLUN, 

GND, ME1 
SA + FBA [5] N/A  0.39850 ACLD19*, DRPA, GLYCDx, 

F6PA, TPI, LDH_D2, EDA, 
TKT2, LDH_D- 

OptKnock [3] 0.28  N/A ACKr**, PTAr, ACALD* 
Note: The shaded column represents the best result. N/A – Not Applicable. * Common genes for all me-
thods. ** Common genes in either 2 methods. BPCY is in gram (gram-glucose.hour)-1. 

Table 3. Comparison between average computational time of BHFBA and BAFBA for 1000 
iterations 

Method Computation Time (s) 
BHFBA 3223 
BAFBA 10253 

 
In addition, since BA and Hill Climbing algorithm is a new hybrid algorithm. 

Hence, we conducted a benchmarking to test performance of a hybrid of BA and Hill 
Climbing algorithm (BH). As BA is looking for the maximum, the functions are in-
verted before the algorithm is applied. The De Jong and Martin & Gaddy functions 
are used in this paper. Table 4 shows the mathematical representation of the functions. 
Table 5 shows mean and standard deviation (STD) of the both functions, De Jong and 
Martin & Gaddy, tested on both original BA and BH. As seen from the results, both 
BHFBA and BH performed better than other algorithms. It can be concluded that the 
capability of Hill Climbing algorithm in finding local optimum improved the 
performance of the original BA. The original BA with the problem of repetitive 
iterations of the algorithm in local search where each bee keep searching until the best 
possible answer is reached. Our proposed BHFBA solved the problem by 
implementing Hill Climbing algorithm into the local search part. Hill Climbing 
algorithm is a powerful local search algorithm which attempts to find a better solution 
by incrementally changing a single element of the solution until no further 
improvements can be found, the search process is recorded so the process is not 
repeated. Furthermore, one of the advantages of Hill Climbing algorithm is it can 
return a valid solution even if it is interrupted at any time before it ends. 

Table 4. Mathematical representation of De Jong and Beale functions 

Name Mathematical representation 
De Jong maxF = (3905.93) −100(x1

2 – x2 )
2 − (1− x1)

2 
Martin & Gaddy minF = (x1 – x2)

2 + ((x1 + x2 - 10) / 3)2 
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Table 5. Obtained fitness value of both De Jong and Beale functions 

Function Mean STD 
BA BH BA BH 

De Jong 3.91e+03 3.90e+03 0.000504 4.79e-13 
Martin & Gaddy 11.1083 11.1111 0.002797 0 

4 Conclusion and Future Works 

In this paper, BHFBA is proposed to predict optimal sets of gene deletion to maxim-
ize the production of desired metabolite. Experimental results on E. coli iJR904 mod-
el obtained from literature showed that BHFBA is effective in generating optimal 
solutions to the gene knockout prediction, and is therefore a useful tool in Metabolic 
Engineering [12]. We are interested in applying other fitness functions in BHFBA 
such as minimization of metabolic adjustment (MOMA) and regulatory on/off mini-
mization (ROOM) to further improve the performance of BHFBA. Besides that, BA 
employs many tunable parameters which are difficult for the users to determine so it 
is important to find ways to help the users choose suitable parameters. 
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