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Abstract. An improved differential evolution (DE) algorithm is proposed in 
this paper to optimize its performance in estimating the germane parameters for 
metabolic pathway data to simulate glycolysis pathway for Saccharomyces 
cerevisiae. This study presents an improved algorithm of parameter sensitivity 
test into the process of DE algorithm. The result of the improved algorithm is 
testifying to be supreme to the others estimation algorithms. The outcomes from 
this study promote estimating optimal kinetic parameters, shorter computation 
time and ameliorating the precision of simulated kinetic model for the 
experimental data. 
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1 Introduction 

Current studies basically have concentrated on the modification of the computer 
readable data from the biological activity which allows the mean of analysis. Thus, 
studying in the metabolic pathway permits scientists to simulate the process inside 
the cell by a mathematical modeling. To develop a valid pathway model that 
functions as biological functions simulator is the goal for the study of system 
biology. Parameter estimation is one of the key steps in mathematical model. 
Regrettably, it has encountered a few problems such as increasing number unknown 
parameters and equations in the model which contributes to high complexity of the 
model [1] and low accuracy due to the existence of noise data [2]. Therefore, the aim 
of this study is to propose an intelligent algorithm of incorporate DE and parameter 
sensitivity test to resolve the rising unknown parameters which lead to the 
complexity of the model. The advantages of DE are effectiveness, speed, simplicity 
and ease of use as it consists of only few control parameters [3]. Moreover, 
parameter sensitivity test also plays an important role in generating a model with less 
irrelevant parameters which can minimize computational burden that leads to less 
computational effort and time.  
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2 Method 

Parameters that are comprised of the glycolysis pathway model for Saccharomyces 
cerevisiae will first undergo parameter sensitivity test to identify relevant parameters. 
Next, these identifiable parameters will undergo DE to estimate its optimal value. 

2.1 Parameter Sensitivity Test [4] 

I. Model checking and retrieve necessary information (parameters, states and 
reactions). 

II. Determine steady-state for nominal model. 
III. Determine steady-state for perturbed model. 
IV. Output steady-state sensitivity in graph. 

2.2 Differential Evolution Algorithm [5] 

I. Generate random population of m x n solutions for the problem within the 
higher and lower bound where m = number of identifiable parameters and n= 
number of generation. Solutions are presented in the form of floating points.  

II. Evaluate the fitness function f(x) of each individual for n solution where each 
individual represents a candidate parameter value. 

III. Create new population by repeating the following steps until new population 
is complete: 

o Randomly select three parent individuals from a population for each 
n by the following formula where i is the parent index. 

individual_i= floor(rand() * population size) + 1 .  
  

o New generation mutate by the following formula for each 
population size. 

temp_population(i)=Pop(individual3)+F*(Pop(individual1)-
Pop(individual2)) .        

                                                              
Where F is differentiation constant and Pop is the original 
population matrix. 

o If randb(j)<CR or j=rnbr(i) 
Crossover occurs and generated new population. 

Else  
No crossover and original population remain. 
 

Where Randb(j)=  jth random  evaluation of a uniform random 
number generator [0,1] and Rnbr = random chosen index 
{1,2, …D}. 
 

IV. If end condition is satisfied stop and return optimal parameter in current 
population else go to step II.  

(1) 

(2) 
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3 Result and Discussion 

Execution times with 87 unknown parameters shown in Table 1 are greater than  
the execution time shown in Table 2 with 4 unknown parameters. It is shown that the 
lesser the execution time needed when the smaller the number of parameters for the  
 

Table 1. Execution time (without parameter sensitivity test with 87 unknown parameters) 

 
Nelder-
Mead SA GA DE 

Execution time 3:42:57 5:44:43 0:08:53 0:07:52 

Table 2. Execution time (with parameter sensitivity test with 4 unknown parameters) 

 
Nelder-
Mead SA GA DE 

Execution time 0:07:13 0:09:48 0:08:52 0:07:17 
 

 

 

Fig. 1. Measurement data versus simulated data (-o simulated result, -- measurement result; red 
line- species 4, blue line – species 10) 

DE GA 

SA Nelder-Mead 
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algorithm. In Table 2 Nelder-Mead and DE are the two algorithms that required less 
execution time. Unfortunately for Nelder-Mead as the number of unknown parameters 
increase, the execution time increases dramatically whereas this is not occurs in DE. 
DE is shown need a minimum execution time even with bigger population size. Even 
though the execution time of DE is short consistently, the result that generated by DE 
are almost similar with the other estimation algorithms respectively which shown in 
Figure 1. Thus, the proposed method of the incorporation of parameter sensitivity test 
and DE solves the parameter estimation problems which reduces the number of 
unknown parameters and the computational time and raises the accuracy of the 
simulated model with the actual model. 

4 Conclusion and Future Work 

In conclusion, DE is shown outperform than other stochastic optimization algorithms 
in this study but regrettably it may easily be captured in local minima. Basically, the 
concentration will be on global minima rather than local minima. To evade being 
captured in local minima, DE is required for large population. Wang and Chiou 
showed that DE needs larger population and more computational time in order to 
produce the optimal result [6]. State observer which acts as initiator for the starting 
point such as Kalman Filter can be implemented into the DE algorithm to improve its 
performance in the future. DE seems to be very sensitive to control parameters: 
population size, crossover constant and differentiation constant. Therefore self 
adapting approach to these control parameters can be used to optimize the 
performance of the traditional as well as the proposed DE algorithm. 
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